欢迎来到天天文库
浏览记录
ID:35690383
大小:1.54 MB
页数:12页
时间:2019-04-12
《文科立体几何知识点、方法总结材料高三复习88069》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、立体几何知识点整理(文科)一.直线和平面的三种位置关系:1.线面平行符号表示:2.线面相交符号表示:3.线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。方法二:用面面平行实现。方法三:用线面垂直实现。若,则。方法四:用向量方法:若向量和向量共线且l、m不重合,则。2.线面平行:方法一:用线线平行实现。方法二:用面面平行实现。方法三:用平面法向量实现。若为平面的一个法向量,且,则。3.面面平行:方法一:用线线平行实现。方法二:用线面平行实现。三.垂直关系:1.线面垂直:方法一:用
2、线线垂直实现。3/12方法二:用面面垂直实现。2.面面垂直:方法一:用线面垂直实现。方法二:计算所成二面角为直角。3.线线垂直:方法一:用线面垂直实现。方法二:三垂线定理及其逆定理。方法三:用向量方法:若向量和向量的数量积为0,则。一.夹角问题。(一)异面直线所成的角:(1)范围:(2)求法:方法一:定义法。步骤1:平移,使它们相交,找到夹角。步骤2:解三角形求出角。(常用到余弦定理)余弦定理:(计算结果可能是其补角)方法二:向量法。转化为向量的夹角(计算结果可能是其补角):(二)线面角(1)定义:
3、直线l上任取一点P(交点除外),作PO于O,连结AO,则AO为斜线PA在面内的射影,(图中)为直线l与面所成的角。(2)范围:当时,或当时,(3)求法:方法一:定义法。步骤1:作出线面角,并证明。步骤2:解三角形,求出线面角。(三)二面角及其平面角(1)定义:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则射线m和n的夹角3/12为二面角—l—的平面角。(2)范围:(3)求法:方法一:定义法。步骤1:作出二面角的平面角(三垂线定理),并证明。步骤2:解三角形,求出二面角的平面角。方法二
4、:截面法。步骤1:如图,若平面POA同时垂直于平面,则交线(射线)AP和AO的夹角就是二面角。步骤2:解三角形,求出二面角。方法三:坐标法(计算结果可能与二面角互补)。步骤一:计算步骤二:判断与的关系,可能相等或者互补。一.距离问题。1.点面距。方法一:几何法。步骤1:过点P作PO于O,线段PO即为所求。步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)2.线面距、面面距均可转化为点面距。3.异面直线之间的距离方法一:转化为线面距离。如图,m和n为两条异面直线,且,则异面直线m
5、和n之间的距离可转化为直线m与平面之间的距离。方法二:直接计算公垂线段的长度。方法三:公式法。如图,AD是异面直线m和n的公垂线段,,则异面直线m和n之间的距离为:3/1212高考题典例考点1点到平面的距离例1如图,正三棱柱的所有棱长都为,为中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.ABCDOF考点2异面直线的距离例2已知三棱锥,底面是边长为的正三角形,棱的长为2,且垂直于底面.分别为的中点,求CD与SE间的距离.考点3直线到平面的距离BACDOGH例3.如图,在棱长为2
6、的正方体中,G是的中点,求BD到平面的距离考点4异面直线所成的角例4如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角的直二面角.是的中点.(I)求证:平面平面;(II)求异面直线与所成角的大小.12考点5直线和平面所成的角例5.四棱锥中,底面为平行四边形,侧面底面.已知,,,.(Ⅰ)证明;(Ⅱ)求直线与平面所成角的大小.考点6二面角例6.如图,已知直二面角,,,,ABCQP,,直线和平面所成的角为.(I)证明(II)求二面角的大小.考点7利用空间向量求空间距离和角例7.如图,已知是棱长为的正
7、方体,点在上,点在上,且.(1)求证:四点共面;(2)若点在上,,点在上,,垂足为,求证:平面;(3)用表示截面和侧面所成的锐二面角的大小,求<一>常用结论1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.123.证明平面与平面平行的思考途径:(1)转化为判定二平面无
8、公共点;(2)转化为线面平行;(3)转化为线面垂直.4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直.6.证明平面与平面的垂直的思考
此文档下载收益归作者所有