电子直线加速器的工作原理

电子直线加速器的工作原理

ID:35611600

大小:3.69 MB

页数:86页

时间:2019-04-01

电子直线加速器的工作原理_第1页
电子直线加速器的工作原理_第2页
电子直线加速器的工作原理_第3页
电子直线加速器的工作原理_第4页
电子直线加速器的工作原理_第5页
资源描述:

《电子直线加速器的工作原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、电子直线加速器的加速原理第一节加速电场及电子能量的获得带电粒子加速器是用人工方法借助不同形态的电场,将各种不同种类的带电粒子加速到更高能量的电磁装置,常称为“粒子加速器”,简称“加速器”。电子直线加速器是利用微波电磁场加速电子并且具有直线运动轨道的加速装置。电子直线加速器的加速方式有两种:行波加速方式和驻波加速方式。一、行波加速方式图2-1的模型是电子直线加速最基本的原理。很显然,电子只能在加速缝隙D中得到加速。若平均电场强度为则通过加速缝所获得的能量为.设想加速系统能与电子相同的速度前进运动,电子一直处于加速缝中,则加速能持续。但是,根据根据狭义

2、相对论,现实中不可能制造这种系统:由于电子很轻,经过几十千电子伏特的加速之后,速度就可与光速相比拟,而一个宏观的系统是不可能做到与光速相比拟的。圆波导管中可以激励起一种具有纵向分量的电场(),它可以用来加速电子;其磁场分布如图2-2所示,但是磁场在圆波导管中传播的相速度大于光速;要想利用该电场来同步加速电子,要设法使磁场传播的相速度慢下来。如图2-3,在圆波导管中周期性插入带中孔的圆形膜片,依靠膜片的反射作用,使电磁场传播的相速度慢下来,实现对电子的同步加速。这种波导管,人们称其为盘荷波导(disk-loadedwaveguide)加速管,取圆形膜

3、片对波导管加载之意。由图2-3,在轴线附近,能提供一个沿Z轴直线加速电子的电场,假设性波加速电场的的强度为,电子一直处于电场的波峰上,则经过长度为L的加速管之后,电子所获得的能量W为人们把这种加速原理叫做“行波加速原理”。二、驻波加速方式如图2-4,时变电场按直线连续加速电子的模型:一系列双圆筒电极之间,分别接上频率相同的电源,如果该频率和双圆筒电极缝隙之间的距离式(2-2)的关系,则电子可以得以持续加速。式中为v电子运动速度。上述模型在现实中很难实现。若取D=5cm,v近似为光速,则电线不能传输这样高频率的电压。实现上述加速模型只能在一个谐振腔列

4、中完成。在图2-3所示的加速管左右两端适当位置放置短路板,形成一种电磁振荡的驻波状态,其电场分布如图2-5所示。图2-5加速管结构中所有腔体都谐振在一个频率上相邻腔间的距离为D,腔间电场相位差为电子在一个腔飞跃的时间为等于加速管中电磁场振荡的半周期,电子的飞跃时间与加速电场更换方向时间一致,从而能持续加速。这种加速模型被称为驻波加速。综上所述,医用电子直线加速器是利用微波电磁场的行波加速方式或驻波加速方式。如图2-6,医用电子直线加速器主要系统:(1)电子由电子枪产生(2)聚焦磁场约束电子束流的横向运动,避免电子横向散开(3)加速管内必须为真空,避

5、免电子与真空中气体碰撞(4)专门微波功率源系统产生电磁场,由微波功率传输系统馈入加速管,来加速电子。如图2-6.第二节行波加速原理-纵向运动及相运动一、行波电场的加速条件医用行波电子直线加速器的核心是行波加速管,它只所以能加速电子,是因为它不但具有电场的纵向分量,而且它是慢波,能把模的电磁波的相位传播速度慢倒光速,甚至光速以下。在盘荷波导中,微波电磁场以波的形式沿轴线方向(Z轴)向前传播,如图2-7所示。行波加速原理的核心是电子速度和行波相速之间必须满足同步条件:(2-3)电子在行波电场作用下,速度不断增加,要求行波电场的传播速度也同步增加,以对电

6、子施加有效的作用。显然,若同步条件遭到破坏,电场就不能对电子施加有效的加速,如果电子落入减速相位,电子还会受到减速。根据狭义相对论,电子速度V和动能满足下列关系式中为电子静止能量0.511MeV,W为电子动能,c为光速,(2-4)。根据式(2-4),电子速度约为v=0.17~0.37c;当加速到1~2MeV时,电子速度就达到v=0.94~0.98c,如前所述,其后能量再电子刚注入直线加速器时,动能约为10~40KeV增加,电子速度也不再增加多少了。图2-8给出了一台国产8MeV医用行波电子直线加速器电子速度和动能沿加速管变化的计算曲线。图中可见,沿

7、加速管,电子的动能基本上是线性增长的,但电子速度很快就很快接近光速了。由于这一特点,加速能量大于2MeV的电子时,行波电场的速度可以不变,等于光速,即用结构均匀的盘荷波导就可以持续加速电子,从而大大简化了盘荷波导管的设计和加工。在盘荷波导加速管中的轴线附近,行波电场纵向分量E可以表示成(2-5)上式中,为场的幅值,为距离z的函数;为电磁场的角频率;,表示单位长度上的相移,称为z方向的的相位常数,r,z分别为径向和轴向位置,为零阶虚变量贝塞尔函数,当在r0时,1.从式(2-5)可见,行波电场的强度和方向都是随时间和轴上位置交变的。在同一时刻,沿加速管

8、轴线不同地方,电场方向有的与加速运动方向一致,有的则相反。电场以波的形式向前传播(图2-9)。图中为导波波长,行波加速就是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。