新课标 高中数学选修1-1全册学案(完整版)

新课标 高中数学选修1-1全册学案(完整版)

ID:35604491

大小:5.70 MB

页数:149页

时间:2019-03-31

新课标 高中数学选修1-1全册学案(完整版)_第1页
新课标 高中数学选修1-1全册学案(完整版)_第2页
新课标 高中数学选修1-1全册学案(完整版)_第3页
新课标 高中数学选修1-1全册学案(完整版)_第4页
新课标 高中数学选修1-1全册学案(完整版)_第5页
资源描述:

《新课标 高中数学选修1-1全册学案(完整版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.学校:临清一中学科:数学编写人:刘占忠审稿人:贾志安1.1.1命题及其关系一、课前小练:[来源:学科网]阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、新课内容:1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,哪些是命题.②真命题:判断为真的语句叫做真命题(trueproposition);假命题:判断为假的语句叫做假命题(falseproposit

2、ion).上述5个命题中,哪些为真命题?哪些为假命题?③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:三、练习:教材P4 1、2、3 四、作业:1、教材P8第1题2、作业本1-10五、课后反思命题教案学校:临清一中学科:数学编写人:

3、刘占忠审稿人:张林课题1.1.1命题及其关系(一)课型新授课教学[来源:学,科,网Z,X,X,K]目标1)知识方法目标了解命题的概念,2)能力目标会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.教学重点难点1)重点:命题的改写2)难点:命题概念的理解,命题的条件与结论区分教法与学法教法:教学过程备注1.课题引入(创设情景)阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.2.问题探究1)难点突

4、破2)探究方式3)探究步骤4)高潮设计1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(trueproposition);假命题:判断为假的语句叫做假命题(falseproposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;引导学生归纳出命题的概

5、念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.②试将例1中的命题(6)改写成“若,则”的形式.③例2:将下列命题改写成“若,则”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;

6、(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3.小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式.通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若,则”的形式,为后续的学习打好基础。[来源:Z_xx_k.Com]3.练习提高1.练习:教材P4 1、2、3 师生互动4.作业设计作业:1、教材P8第1题2、作业本1-105.课后反思本节课是一堂概念课,比较枯燥,在教学时应充分调动学生的积极性,比如引例中的“他是个高个子.”例1中的“(7)明天下雨.”等比较有趣的生活

7、问题,和学生有充分的语言交流,在一问一答中,引导学生完成本节课的学习。学校:临清一中学科:数学编写人:张贵岭审稿人:张林1.1.2双曲线的几何性质课前预习学案一、预习目标理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.二、预习内容1、双曲线的几何性质及初步运用.类比椭圆的几何性质.2.双曲线的渐近线方程的导出和论证.观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,

8、请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、教学过程(一)复习提问引入新课1.椭圆有哪些几何性质,是如何探讨的?请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.2.双曲线的两种标准方程是什么?再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标下面我们类比椭圆的几何性质来研究它的几何性质.(二)类比联想得出性质(性质1~3)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。