本科毕业论文外文翻译--水果品质自动分级的机器视觉系统

本科毕业论文外文翻译--水果品质自动分级的机器视觉系统

ID:35586722

大小:1.07 MB

页数:10页

时间:2019-03-30

本科毕业论文外文翻译--水果品质自动分级的机器视觉系统_第1页
本科毕业论文外文翻译--水果品质自动分级的机器视觉系统_第2页
本科毕业论文外文翻译--水果品质自动分级的机器视觉系统_第3页
本科毕业论文外文翻译--水果品质自动分级的机器视觉系统_第4页
本科毕业论文外文翻译--水果品质自动分级的机器视觉系统_第5页
资源描述:

《本科毕业论文外文翻译--水果品质自动分级的机器视觉系统》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、塔里木大学本科毕业论文外文翻译水果品质自动分级的机器视觉系统原文来源:J.Blasco;N.Aleixos;E.Molt.MachineVisionSystemforAutomaticQualityGradingofFruit.BiosystemsEngineering(2003)85(4),415–423;摘要水果和蔬菜,通常以批次的形式提供给消费者消费。而水果的均匀性和外观对消费者的决策有着重大的影响,由于这个原因,农农产品的展现无论是在田地里还是在最后流向消费者的不同阶段,都会被处理,而且通常是朝着同类产品的清洗和分类方面来进行的。该项目的ESPRIT3,参考9230。集处理,

2、检查和包装水果和蔬菜于一体的综合系统(英文简写SHIVA)形成了一种自动、无损检测和处理的水果的机器人系统。本文的目的是报告在ValencianodeInvestigacionesAgrarias研究所研究的对桔子,桃子,苹果品质进行实时测评而发展起来的机器视觉技术,并评估该技术在下列质量属性:大小,颜色,茎的位置及外部瑕疵检测中的效率。此种分解研究,在贝叶斯判别分析的基础上,使用并且允许水果因背景不同而精确的进行区分。因此,尺寸的确定性恰当的得到了解决。水果由此系统测出的颜色,和目前被用作标准的色度指标值非常吻合。在茎块的定位和瑕疵的检测中也取得了良好的效果。该系统在用大批量苹果进

3、行在线测试分级后也取得了很不错的表现,并且并在缺陷检测和规模估计中分别取得了86%和93%的重复一致性。此系统的准确性和可重复性和人工分级几乎一样。1.简介机器视觉在水果和蔬菜检验中的应用在最近几年有所增加。如今,世界各地的一些制造商生产按水果大小,颜色和重量进行水果前期分级的分拣机。然而,市场不断地要求更高质量的产品,因此,其他功能已经发展来提高机器视觉检测系统(例如茎定位,确定主,副皮肤的颜色,检测污点)。大小,是第一个与质量有关的参数,已经通过使用机器视觉测量周长或直径其中任一种得到了测量(陶等,1990;Varghese等,1999),周长(萨卡&沃尔夫,1985)或直径(布

4、罗迪等。,1994)。颜色也是一个重要的品质因素,已被广泛研究(Singh等人,1992年,1993年。哈恩,2002年;多布然斯基和Rybczynski,2002)。有些水果有一种颜色均匀分布在皮肤表面,我们称之为主色。该平均表面颜色对这些水果来说是一个很好的质量指标。然而,一些其他水果(例如桃子,苹果,西红柿)有次要颜色可作为一种成熟的良好指标。在这种情况下,它是不可能完全只把全球面色彩作为质量参数的。塔里木大学本科毕业论文外文翻译在桔子,桃子,苹果这些水果中,有必要进行长茎检测,以避免损害其他水果,或者是因为没有他们可能意味着质量损失。已经有若干解决方案被提出了来确定茎的位置,

5、如:使用结构的照明检测苹果凹陷(杨,1993);颜色分割技术来区分柑橘类水果的花萼和茎块(鲁依斯等,1996);或研究苹果光的反射(彭曼,2002)。有时候,茎容易混淆成皮肤上的缺陷或瑕疵。损伤和擦伤检测是质量评价的一个关键因素。众多苹果擦伤检测方法中有一种是基于对干扰过性滤器的使用(Rehkugler&斯鲁普,1986年)。其他研究同时进行瑕疵处理和颜色评定这两项。(米勒和Delwiche,1989年;勒费弗尔等,1994;切鲁托等,1996;莱曼斯等,1999,2002;Blasco及蜕皮澳,2002年)。最近的技术结合红外和可见的信息来检测瑕疵(Aleixos等,2002)或者

6、使用高光谱成像(Peirs等,2002)。这项工作的目的是报告在项目ESPRIT3(参考9230的集处理,检查和包装水果和蔬菜于一体的综合系统,英文简写SHIVA),该技术在其他地方被描述过(墨尔特等,1997,1998),和ValeencianoAgrarias(IVIA)研究所在1998年三月进行的测试中取得的成果的基础上发展而来的图像分析技术。该视觉系统是为了在线测量与桔子,桃子,苹果质量有关的几个参数,如大小,以及鉴定次要色点(桃和苹果一些种类的水果需要),茎块位置或斑点的存在。水果要在不1秒的时间里于四个不同角度被检测。为了评估视觉系统的效率,自动检验的性能和重复性和专家们

7、的人工检测进行了比较。2.材料与方法2.1.硬件机器视觉系统是由一个三电荷耦合器件(CCD)彩色摄像机(索尼XC003P)和一个图像采集卡(流星的Matrox)组成的,并被连接到了一台可兼容的个人电脑[奔腾200兆赫,48Mb随机存取存储器(RAM)]。该系统提供了768每576像素的图像,以35mm每像素实现。图像采集卡从相机撷取并解码复合视频信号为在红,绿,蓝色坐标(RGB)的三个用户定义的缓冲区。照明系统是一个环形日光灯管组成的,里面内室涂有白色亚光

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。