结晶学及矿物学课后习题及答案

结晶学及矿物学课后习题及答案

ID:35552193

大小:399.50 KB

页数:32页

时间:2019-03-27

结晶学及矿物学课后习题及答案_第1页
结晶学及矿物学课后习题及答案_第2页
结晶学及矿物学课后习题及答案_第3页
结晶学及矿物学课后习题及答案_第4页
结晶学及矿物学课后习题及答案_第5页
资源描述:

《结晶学及矿物学课后习题及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章习题1.晶体与非晶体最本质的区别是什么?准晶体是一种什么物态?答:晶体和非晶体均为固体,但它们之间有着本质的区别。晶体是具有格子构造的固体,即晶体的内部质点在三维空间做周期性重复排列。而非晶体不具有格子构造。晶体具有远程规律和近程规律,非晶体只有近程规律。准晶态也不具有格子构造,即内部质点也没有平移周期,但其内部质点排列具有远程规律。因此,这种物态介于晶体和非晶体之间。2.在某一晶体结构中,同种质点都是相当点吗?为什么?答:晶体结构中的同种质点并不一定都是相当点。因为相当点是满足以下两个条件的点:a.点的内容相同;b.点的周围环境相同。

2、同种质点只满足了第一个条件,并不一定能够满足第二个条件。因此,晶体结构中的同种质点并不一定都是相当点。3.从格子构造观点出发,说明晶体的基本性质。答:晶体具有六个宏观的基本性质,这些性质是受其微观世界特点,即格子构造所决定的。现分别叙述:a.自限性晶体的多面体外形是其格子构造在外形上的直接反映。晶面、晶棱与角顶分别与格子构造中的面网、行列和结点相对应。从而导致了晶体在适当的条件下往往自发地形成几何多面体外形的性质。b.均一性因为晶体是具有格子构造的固体,在同一晶体的各个不同部分,化学成分与晶体结构都是相同的,所以晶体的各个部分的物理性质与化学

3、性质也是相同的。c.异向性同一晶体中,由于内部质点在不同方向上的排布一般是不同的。因此,晶体的性质也随方向的不同有所差异。d.对称性晶体的格子构造本身就是质点周期性重复排列,这本身就是一种对称性;体现在宏观上就是晶体相同的外形和物理性质在不同的方向上能够有规律地重复出现。e.最小内能性晶体的格子构造使得其内部质点的排布是质点间引力和斥力达到平衡的结果。无论质点间的距离增大或缩小,都将导致质点的相对势能增加。因此,在相同的温度条件下,晶体比非晶体的内能要小;相对于气体和液体来说,晶体的内能更小。f.稳定性内能越小越稳定,晶体的稳定性是最小内能性

4、的必然结果。5.图1-6中,金红石结构中的氧离子分属几套相当点?答:分属4套相当点.第二章习题1.讨论一个晶面在与赤道平面平行、斜交或垂直时,投影点与投影基圆之间的距离关系。答:根据晶面极射赤平投影的步骤和方法可知:与赤道平面平行的晶面投影点位于基圆的圆心,斜交的晶面投影点位于基圆的内部,直立的晶面投影点位于基圆上。根据这一规律可知,投影点与基圆的距离由远及近顺序分别为与赤道平面平行的晶面、斜交的晶面和垂直的晶面。2.作立方体、四方柱的各晶面投影,讨论它们的关系。答:立方体有六个晶面,其极射赤平投影点有六个投影点。四方柱由四个晶面组成,其投影

5、点只有四个。四方柱的四个投影点的分布与立方体直立的四个晶面的投影点位置相同。如果将四方柱顶底面也投影,则立方体与四方柱投影结果一样,由此说明,投影图不能放映晶体的具体形状,只能反映各晶面的夹角情况。3.已知磷灰石晶体上(见附图),m∧m=60°,m∧r=40°,作其所有晶面的投影,并在投影图中求r∧r=?答:晶面的极射赤平投影点见右图。在吴氏网中,将两个相邻的r晶面投影点旋转到过同一条大圆弧,在这条大圆弧上读取两点之间的刻度即为r∧r=42º。4.作立方体上所有对称面的极射赤平投影。5.请证明:在极射赤平投影图中,某晶面投影点与圆心的距离h与

6、该晶面的极距角ρ的关系为:h=rtanρ/2(r为基圆半径).请见教材图2-6.在直角三角形OSa中,一直角边长为r,另一直角边为Oa,Oa=h,Oa的对角为ρ/2,根据三角函数关系可得:h=rtagρ/2.第三章习题1.总结对称轴、对称面在晶体上可能出现的位置。答:在晶体中对称轴一般出现在三个位置:a.角顶;b.晶棱的中点;c.晶面的中心。而对称面一般出现在两个位置:a.垂直平分晶棱或晶面;b.包含晶棱。2.旋转反伸操作是由两个操作复合而成的,这两个操作可以都是对称操作,也可以都是非对称操作,请举例说明之。答:旋转反伸轴Li3是由L3及C的

7、操作复合而成,在有Li3的地方是有L3和C存在的,这两个操作本身就是对称操作;旋转反伸轴Li6是由L6和C的操作复合而成,在有Li6的地方并没有L6和C存在的,即这两个操作本身是非对称操作,但两个非对称操作复合可以形成一个对称操作。3.用万能公式证明:Li2=P⊥,Li6=L3+P⊥(提示:Lin=Ln×C;L3+L2∥=L6) 证明:∵Li2=L2×C,而万能公式中L2×C=P⊥∴Li2=P⊥∵Li6=L6×C,将L3+L2∥=L6代入可得:Li6=(L3+L2∥)×C=L3+(L2×C)=L3+P4.L33L24P属于什么晶系?为什么?答

8、:它属于六方晶系。因为L33L24P也可以写成Li63L23P,而Li6为六次轴,级别比L3的轴次要高,因此在晶体分类中我们一般将Li63L23P归属六方晶系。第四

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。