高考复习数学必修一(人教版)知识总结(非常全面)

高考复习数学必修一(人教版)知识总结(非常全面)

ID:35314876

大小:574.50 KB

页数:7页

时间:2019-03-23

高考复习数学必修一(人教版)知识总结(非常全面)_第1页
高考复习数学必修一(人教版)知识总结(非常全面)_第2页
高考复习数学必修一(人教版)知识总结(非常全面)_第3页
高考复习数学必修一(人教版)知识总结(非常全面)_第4页
高考复习数学必修一(人教版)知识总结(非常全面)_第5页
资源描述:

《高考复习数学必修一(人教版)知识总结(非常全面)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数学必修一知识点总结一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。3.集合的中元素的三个特性:(1)元素的确定性:(2)元素的互异性:中元(3)元素的无序性素各表示什么?3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。1)列举法:将集合中的元素一一列举出来{a,b,c……}2)

2、描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。{xÎR

3、x-3>2},{x

4、x-3>2}①语言描述法:例:{不是直角三角形的三角形}②Venn图:画出一条封闭的曲线,曲线里面表示集合。4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合  例:{x

5、x2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:aÎA(2)元素不在集合里,则元素不属于集合,即:aAu注意:常用数集及其记法:非负整数集(即自然数集)记作:N,正整数集N*或N+,整数集Z,有理数集Q,实数集R二:集合间

6、的基本关系1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA)注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x

7、x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。AÍA②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)或若集合AÍB,存在xB且xA,则称集合A是集合B

8、的真子集。③如果AÍB,BÍC,那么AÍC④如果AÍB同时BÍA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。u有n个元素的集合,含有2n个子集,2n-1个真子集三:集合的运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB={x

9、xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB={x

10、xA,或xB}).全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记

11、作:U设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,CSA=韦恩图示SA7性质A∩A=AA∩Φ=ΦA∩B=BAA∩BAA∩BBAUA=AAUΦ=AAUB=BUAAUBAAUBB(CuA)∩(CuB)=Cu(AUB)(CuA)U(CuB)=Cu(A∩B)AU(CuA)=UA∩(CuA)=Φ.四:函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x)

12、,x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)

13、x∈A}叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图像法:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C

14、上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换。(3)函数图像变换的特点:1)函数y=f(x)关于X轴对称y=-f(x)2)函数y=f(x)关于Y轴对称y=f(-x)3)函数y=f(x)关于原点对称y=-f(-x)五:函数的解析表达式,及函数定义域的求法1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。