欢迎来到天天文库
浏览记录
ID:35304843
大小:300.95 KB
页数:7页
时间:2019-03-23
《数据立方体模型总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数据立方体模型总结数据立方体认识 定义:数据立方体是一类多维矩阵,让用户从多个角度探索和分析数据集,通常是一次同时考虑三个因素(维度)。数据立方体模型属于数据仓库的多维数据模型。意义:当我们试图从一堆数据中提取信息时,我们需要工具来帮助我们找到那些有关联的和重要的信息,以及探讨不同的情景。一份报告,不管是印在纸上的还是出现在屏幕上,都是数据的二维表示,是行和列构成的表格。在我们只有两个因素要考虑时,这就足矣,但在真实世界中我们需要更强的工具。数据立方体模型在预测趋势和分析业绩时,数据立方体是极其有用的。数据立方体的构成:数据立方体由两个单元构成1)维度:因素2)测度:实际的数据
2、值建立数据立方体模型的方法(OLAP)OLAP(On-lineAnalyticalProcessing,联机分析处理)是共享多维信息的、针对特定问题的联机数据访问和分析的快速软件技术。联机分析处理(OLAP)系统是数据仓库系统最主要的应用,专门设计用于支持复杂的分析操作,侧重对决策人员和高层管理人员的决策支持,可以根据分析人员的要求快速、灵活地进行大数据量的复杂查询处理,并且以一种直观而易懂的形式将查询结果提供给决策人员,以便他们准确掌握企业(公司)的经营状况,了解对象的需求,制定正确的方案。在国外,不少软件厂商采取了发展其前端产品来弥补关系数据库管理系统支持的不足,力图统一分散
3、的公共应用逻辑,在短时间内响应非数据处理专业人员的复杂查询要求。(拓展)当今数据处理大致分为两类:OLAP(On-lineAnalyticalProcessing,联机分析处理)OLTP(On-lineTransactionProcessing,联机事务处理),两者的区别:OLAP与OLTP数据处理类型OLTPOLAP面向对象业务开发人员分析决策人员功能实现日常事务处理面向分析决策数据模型关系模型多维模型数据量几条或几十条记录百万千万条记录操作类型查询、插入、更新、删除查询为主OLAP的基本操作我们已经知道OLAP的操作是以查询——也就是数据库的SELECT操作为主,但是查询可以
4、很复杂,比如基于关系数据库的查询可以多表关联,可以使用COUNT、SUM、AVG等聚合函数。OLAP正是基于多维模型定义了一些常见的面向分析的操作类型是这些操作显得更加直观。 OLAP的多维分析操作包括:钻取(Drill-down)、上卷(Roll-up)、切片(Slice)、切块(Dice)以及旋转(Pivot),下面还是以上面的数据立方体为例来逐一解释下: 钻取(Drill-down):在维的不同层次间的变化,从上层降到下一层,或者说是将汇总数据拆分到更细节的数据,比如通过对2010年第二季度的总销售数据进行钻取来查看2010年第二季度4、5、6每个月的消费数据,如上图
5、;当然也可以钻取浙江省来查看杭州市、宁波市、温州市……这些城市的销售数据。 上卷(Roll-up):钻取的逆操作,即从细粒度数据向高层的聚合,如将江苏省、上海市和浙江省的销售数据进行汇总来查看江浙沪地区的销售数据,如上图。 切片(Slice):选择维中特定的值进行分析,比如只选择电子产品的销售数据,或者2010年第二季度的数据。 切块(Dice):选择维中特定区间的数据或者某批特定值进行分析,比如选择2010年第一季度到2010年第二季度的销售数据,或者是电子产品和日用品的销售数据。旋转(Pivot):即维的位置的互换,就像是二维表的行列转换,如图中通过旋转实现产品维和地域
6、维的互换。OLAP的类型(根据存储方式的不同进行分类)根据多维数据模型存储方式不同,OLAP主要可以分为三类:基于多维数据库OLAP(MOLAP),基于关系数据库的OLAP(ROLAP)和混合型的HOLAP。1 MOLAPMOLAP表示基于多维数据组织的OLAP实现(MultidimensionalOLAP)。以多维数据组织方式为核心,也就是说,MOLAP使用多维数组存储数据。多维数据在存储中将形成"立方块(Cube)"的结构,在MOLAP中对"立方块"的"旋转"、"切块"、"切片"是产生多维数据报表的主要技术。特点是将细节数据和聚合后的数据均保存在cube中,所以以空间换效率,
7、查询时效率高,但生成cube时需要大量的时间和空间。2 ROLAPROLAP表示基于关系数据库的OLAP实现(RelationalOLAP)。以关系数据库为核心,以关系型结构进行多维数据的表示和存储。ROLAP将多维数据库的多维结构划分为两类表:一类是事实表,用来存储数据和维关键字;另一类是维表,即对每个维至少使用一个表来存放维的层次、成员类别等维的描述信息。维表和事实表通过主关键字和外关键字联系在一起,形成了"星型模式"。对于层次复杂的维,为避免冗余数据占用过大的存储空间,可以
此文档下载收益归作者所有