4、
5、F1F2
6、)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F1F2|<2a}.点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程(>0)(a>0,b>0)参数方程(t为参数)范围─a£x£a,─b£y£b
7、x
8、³a,yÎRx³0中心原点O(0,0)原点O(0,0)顶点(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长
9、2a,虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0),F2(─c,0)准线x=±准线垂直于长轴,且在椭圆外.x=±准线垂直于实轴,且在两顶点的内侧.x=-准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c(c=)2c(c=)离心率e=1文档实用标准文案焦半径P(x0,y0)为圆锥曲线上一点,F1、F2分别为左、右焦点
10、PF1
11、=a+ex0
12、PF2
13、=a-ex0P在右支时:P在左支时:
14、PF1
15、=a+ex0
16、PF1
17、=-a-ex0
18、PF2
19、=-a+ex0
20、PF2
21、=a-ex0
22、PF
23、=x0+【备注1】双曲线:⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.
24、⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.【备注2】抛物线:(1)抛物线=2px(p>0)的焦点坐标是(,0),准线方程x=-,开口向右;抛物线=-2px(p>0)的焦点坐标是(-,0),准线方程x=,开口向左;抛物线=2py(p>0)的焦点坐标是(0,),准线方程y=- ,开口向上;抛物线=-2py(p>0)的焦点坐标是(0,-),准线方程y=,开口向下.(2)抛物线=2px(p>0)上的点M(x0,y0)与焦点F
25、的距离;抛物线=-2px(p>0)上的点M(x0,y0)与焦点F的距离(3)设抛物线的标准方程为=2px(p>0),则抛物线的焦点到其顶点的距离为,顶点到准线的距离,焦点到准线的距离为p.(4)已知过抛物线=2px(p>0)焦点的直线交抛物线于A、B两点,则线段AB称为焦点弦,设A(x1,y1),B(x2,y2),则弦长=+p或(α为直线AB的倾斜角),,(叫做焦半径).椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。例1:已知椭圆的焦点是F1(0,-1)、F2(0,1),P是椭圆上一点,并且PF1+PF2=2F1F2,求椭圆的标准方程。解:由PF1+PF2=2F1F2=2×2=4
26、,得2a=4.又c=1,所以b2=3.所以椭圆的标准方程是+=1.2.已知椭圆的两个焦点为F1(-1,0),F2(1,0),且2a=10,求椭圆的标准方程.解:由椭圆定义知c=1,∴b==.∴椭圆的标准方程为+=1.文档实用标准文案二、未知椭圆焦点的位置,求椭圆的标准方程。例:1.椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当为长轴端点时,,,椭圆的标准方程为:;(2)当为短轴端点时,,,椭圆的标准方程为:;三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。例.求过点(-3,2)且与椭圆+=1有相同焦点的椭圆的
27、标准方程.解:因为c2=9-4=5,所以设所求椭圆的标准方程为+=1.由点(-3,2)在椭圆上知+=1,所以a2=15.所以所求椭圆的标准方程为+=1.四、与直线相结合的问题,求椭圆的标准方程。例:已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为,由,得,∴,,,∴,∴为所求.五、求椭圆的离心率问题。例已知椭圆的离心率,求的值.解:当椭圆的焦点在轴上