1ww=$+(&+$)e,0<8<1. LIMITTHEOREMSFOREIGENVALUES35Itfollowsthatvarlog(s;)I11=2.-++28f-yyn-p+jg(n-P+II’+!!+1(5.7)3,T,(n-p+.g3<2f&~+21”+dx++l’---$x“n-pxn-PXnP322y*-y**=-2log(1-y*>+f*y*1-y*+3*n2(1-y*)*2-y*<-2log(l-y”)+A.y*.<+for1-~.+2log(l-Y*)~Jn-p-1xby(5.6).EXAMPLE5.1.Letp=5,n=20,i.e.,y*=0,25.Thecorrectmeanvalueis0.003.Theboundsare-0.006and0.017.Thecorrectvarianceis0.592.Theapproximatingvalueis-2log0.75=0.575.Theboundsare0.542and0.625.EXAMPLE5.2.Letp=10,n=40,i.e.,y*=0.25.Thecorrectmeanvalueis0.0014.Theboundsare-0.0028and0.0083.Thecorrectvarianceis0.568.Theapproximatingvalueis0.575,whiletheboundsare0.559and0.600.Thenexttheoremconcernstheconvergencerateoflog/Sr’(.THEOREM5.3.LetG:‘(x)bethedistributionfunctionof,ogIs~‘I-E1ogls;‘l=,&(‘%Uj-ElogUJ/Varlog)SF’I~~~=lVarloguj’ 36DAGJONSSONwherey*=p/nandCisanabsoluteconstant,1
1givesw’(z)=++e*$o’ZW”‘(Z)=$+3;,0<8’<1,i.e.,v/“‘(Z)+3(w’(z))2<3forsomeconstantc,.Thus24c,&‘>andPV’-2logl-j=l(5)2Y*>-2log(l-y*>--p;n1-y*iEIlogUj-ElogUj13j=lY*-logl-ny*>(n+l12-Mn+l))Y*‘2-(n/(n+1))y”whichgivestheupperboundc16/Cl-Y*)Wl/(l-Y*)>-y*/n’Theboundisprimarlyoforderl/rnexceptwheny*isnear0ornear1,i.e.,whenpisverysmallornearn. 38DAGJONSSONACKNOWLEDGMENTMyteacher,ProfessorCarl-GustavEsseen.introducedmetothetopicofthispaper.Iwishtothankhimforhisencouragingsupport,valuableadviceandconstructivecriticism.REFERENCES[I]ANDERSON,T.W.(1958).AnIntroductiontoMultivariateStatisticalAna@sis.Wiley,NewYork.121ARHAROV,L.V.(1971).Limittheoremsforthecharacteristicalrootsofasamplecovariancematrix.SovietMath.Dokl.12.1206-1209.[31[a]ARNOLD.L.(1967).Ontheasymptoticdistributionoftheeigenvaluesofrandommatrices.J.Math.Anal.Appl.20,262-268.[b]ARNOLD,L.(1971).OnWigner’sSemicircleLawfortheEigenvaluesofRandomMatrices.Z.Wahrsch.Verw.Gebiete19,191-198.14]CARMELI.M.(1974).Statisticaltheoryofenergylevelsandrandommatricesinphysics.J.Statist.Phys.10.259-297.15]CHUNG.K.L.(1968).ACourseinProbabilityTheory.Harcourt,Brace&World.NewYork.[G]ERDI?LYI,A.,MAGNUS,W..OBERHETTINGER,F.,ANDTRICOMI,F.(1953).HigherTranscendentalFunctions,I.McGraw-Hill,NewYork.(71[a]FELLER,W.(1968).AnIntroductiontoProbabilityTheoryandItsApplications,1.Wiley,NewYork.(blFELLER,W.(1971).AnIntroductiontoProbabilityTheoryandItsApplications,II.Wiley,NewYork.[81GRENANDER.~.(I963).ProbabilitiesonAlgebraicStructures.Almqvist&Wiksell.Stockholm.191GRENANDER.U.,ANDSILVERSTEIN.J.(1977).Spectralanalysisofnetworkswithrandomtopologies.SIAMJ.Appl.Math.32(2),499-519.IlO]JONSSON.D.(1976).Somelimittheoremsfortheeigenvaluesofasamplecovariancematrix.TechnicalReportNo.6,DepartmentofMathematics,UppsalaUniversity,Uppsala.II1IKARLIN,~.(1969).AFirstCourseinStochasticProcesses.AcademicPress,NewYork.[121KRISHNAIAH,P.R.(1978).Somerecentdevelopmentsonrealmultivariatedistributions.Develop.Statist.1.135-169.[131MAREENKO.V.A.,ANDPASTUR,L.A.(1967).Distributionsofeigenvalusofsomesetsofrandommatrices.Math.USSR-Sb.1,507-536.[141RAO,C.R.(1973).LinearStatisticalInferenceandItsApplications.Wiley,NewYork.[151WACHTER.K.W.(1978).Thestronglimitsofrandommatrixspectraforsamplematricesofindependentelements.Ann.Probab.6,1-18.[161[a]WIGNER,E.P.(1955).Characteristicvectorsofborderedmatriceswithinfinitedimensions.Ann.ofMath.62,548-564.[b]WIGNER,E.P.(1958).Onthedistributionsoftherootsofcertainsymmetricmatrices.Ann.ofMath.67,325-327.