组合数学 课后答案

ID:3496726

大小:922.00 KB

页数:49页

时间:2017-11-21

组合数学 课后答案_第1页
组合数学 课后答案_第2页
组合数学 课后答案_第3页
组合数学 课后答案_第4页
组合数学 课后答案_第5页
资源描述:

《组合数学 课后答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、习题二2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。2.1任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数

2、,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。2.2证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数=偶数;偶数+偶数=偶数。因此只需找以上2个情

3、况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。2.1一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。2.2一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?证明:根据推论2.2.1,若将4*(20-1)+1=77个水果取出,必有20个相同

4、种类的水果。2.1证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。而现在有任意给定的n+2个整数,我们需要构造n+1个盒子,即对上面2n个余数进行分组,共n+1组:{0},{1,2n-1},{2,2n-2},{3,2n-3},…,{n-1,n+1},{n}。根据鸽巢原理,n+2个整数,必有两个整数除以2n落入上面n+1个盒子里中的一个,若是{0}或{n}则说明它们的和

5、及差都能被2n整除;若是剩下n-1组,因为一组有两个余数,余数相同则它们的差能被2n整除,不同则它们的和能被2n整除。证明成立。2.1一个网站在9天中被访问了1800次,证明:存在连续的3天,这个网站的访问量超多600次。证明:设网站在9天中访问数分别为a1,a2,...,a9其中a1+a2+...+a9=1800,令a1+a2+a3=b1,a4+a5+a6=b2,a7+a8+a9=b3因为(b1+b2+b3)/3>=600由推论2.2.2知,b1,b2,b3中至少有一个数大于等于600。所以存在有连续的三天,

6、访问量大于等于600次。2.2将一个矩形分成5行41列的网格,每个格子涂1种颜色,有4种颜色可以选择,证明:无论怎样涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。证明:首先对一列而言,因为有5行,只有4只颜色选择,根据鸽巢原理,则必有两个单元格的颜色相同。另外,每列中两个单元格的不同位置组合有=10种,这样一列中两个同色单元格的位置组合共有10*4=40种情况。而现在共有41列,根据鸽巢原理,无论怎样涂色,则必有两列相同,也就是必有一个由格子构成的矩形的4个角上的格子是同一颜色。2.1将一

7、个矩形分成(m+1)行列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。证明:(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。(2)每列中两个单元格的不同位置组合有种,这样一列中两个同色单元格的位置组合共有种情况(3)现在有列,根据鸽巢原理,必有两列相同。证明结论成立。2.1一名实验员在50天里每天至少做一次实验,而实验总次数不超过75。证明一定存在连续的若干天,她正好做了24次实验。证明:令b1

8、,b2,...,b50分别为这50天中他每天的实验数,并做部分和a1=b1,a2=b1+b2,。。a50=b1+b2+...+b50.由题,bi>=1(1<=i<=50)且a50<=75所以1<=a1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《组合数学 课后答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、习题二2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。2.1任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数

2、,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。2.2证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数=偶数;偶数+偶数=偶数。因此只需找以上2个情

3、况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。2.1一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。2.2一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?证明:根据推论2.2.1,若将4*(20-1)+1=77个水果取出,必有20个相同

4、种类的水果。2.1证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。而现在有任意给定的n+2个整数,我们需要构造n+1个盒子,即对上面2n个余数进行分组,共n+1组:{0},{1,2n-1},{2,2n-2},{3,2n-3},…,{n-1,n+1},{n}。根据鸽巢原理,n+2个整数,必有两个整数除以2n落入上面n+1个盒子里中的一个,若是{0}或{n}则说明它们的和

5、及差都能被2n整除;若是剩下n-1组,因为一组有两个余数,余数相同则它们的差能被2n整除,不同则它们的和能被2n整除。证明成立。2.1一个网站在9天中被访问了1800次,证明:存在连续的3天,这个网站的访问量超多600次。证明:设网站在9天中访问数分别为a1,a2,...,a9其中a1+a2+...+a9=1800,令a1+a2+a3=b1,a4+a5+a6=b2,a7+a8+a9=b3因为(b1+b2+b3)/3>=600由推论2.2.2知,b1,b2,b3中至少有一个数大于等于600。所以存在有连续的三天,

6、访问量大于等于600次。2.2将一个矩形分成5行41列的网格,每个格子涂1种颜色,有4种颜色可以选择,证明:无论怎样涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。证明:首先对一列而言,因为有5行,只有4只颜色选择,根据鸽巢原理,则必有两个单元格的颜色相同。另外,每列中两个单元格的不同位置组合有=10种,这样一列中两个同色单元格的位置组合共有10*4=40种情况。而现在共有41列,根据鸽巢原理,无论怎样涂色,则必有两列相同,也就是必有一个由格子构成的矩形的4个角上的格子是同一颜色。2.1将一

7、个矩形分成(m+1)行列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。证明:(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。(2)每列中两个单元格的不同位置组合有种,这样一列中两个同色单元格的位置组合共有种情况(3)现在有列,根据鸽巢原理,必有两列相同。证明结论成立。2.1一名实验员在50天里每天至少做一次实验,而实验总次数不超过75。证明一定存在连续的若干天,她正好做了24次实验。证明:令b1

8、,b2,...,b50分别为这50天中他每天的实验数,并做部分和a1=b1,a2=b1+b2,。。a50=b1+b2+...+b50.由题,bi>=1(1<=i<=50)且a50<=75所以1<=a1

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭