Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf

Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf

ID:34933408

大小:2.84 MB

页数:133页

时间:2019-03-14

上传者:不努力梦想只是梦
Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf_第1页
Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf_第2页
Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf_第3页
Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf_第4页
Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf_第5页
资源描述:

《Study.of.Microwave.Dielectric.Resonators.and.Filters.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

國立成功大學電機工程學系博士論文微波介電共振器及微波濾波器之研究StudyofMicrowaveDielectricResonatorsandMicrowaveFilters研究生:陳耀忠Student:Yao-ChungCheng指導教授:黃正亮Advisor:Cheng-LiangHuangDepartmentofElectricalEngineeringNationalChengKungUniversityTainan,Taiwan,R.O.C.DissertationforDoctorofPhilosophyJune,2002中華民國九十一年六月 1(2476x3477x16Mjpeg) 2(2469x3472x16Mjpeg) StudyofMicrowaveDielectricResonatorsandFiltersStudent:Yao-ChungChenAdvisor:Cheng-LiangHuangDepartmentofElectricalEngineeringNationalCheng-KungUniversityAbstractDuetothedevelopmentinmobilecommunication,mobiletelephonesystems,aswellasinsatellitebroadcastingsystemswasrapidly,howtodesignthehigh-qualitydevicesappliedinanalogcircuitisthemostimportanthomework.Therearetwoprimarybranchesinthisresearch.Onepartistodevelopthedielectricceramicsystemsthatexhibitgreatdielectricproperties.Theotherpartistodesignandrealizethecoaxial-typedielectricfilters.1.Studyandfabricationsofmicrowavedielectricresonators(a)TheeffectofCuO,ZnOandV2O5additionstoReAlO3(Re=SmandNd)wereinvestigated.ThesinteringtemperaturesofReAlO3ceramicscanbeeffectivelyreducedfrom1650℃to1410~1430℃duetotheliquid-phasesinteringeffect.Atlowconcentrationlevels(0.25-0.5wt%),theReAlO3ceramicsremainedinthesinglephaseandpresentedsecondphaseSm4Al2O9andNd4Al2O9onSmAlO3andNdAlO3,respectivelywithconcentrationsover0.5wt%.TheQ×fvaluesof51000and41000GHzwasobtainedat1430℃for0.25wt%CuOandI ZnO-sinteredSmAlO3ceramics.TheQ×fvalueof63000GHzwasachievedat1410~1430℃for0.25wt%CuO-sinteredNdAlO3.TherelativedielectricconstantofReAlO3remainsintherangefrom19.6to22.5.ThetemperaturecoefficientofReAlO3ceramicsdependsontheadditionsandrangesfrom–30to-65ppm/℃.(b)ThemicrowavedielectricpropertiesandmicrostructureofBa2-xSm4+2x/3Ti8+yO24+2ywereinvestigated.Thetypicaldielectricperformancesofår=68to79andQ×f=11000to12500GHzwereobtainedinwell-sinteredBa2-xSm4+2x/3Ti9O26ceramics.TheôfvaluesofBa2-xSm4+2x/3Ti9O26ceramicswasadjustedfromnegative(-3ppm/℃forx=0)topositive(+6ppm/℃forx=0.3).TheBa2-xSm4+2x/3Ti8+yO24+2yceramicswithx=0.1~0.3andy=0~2formedthecompletesolidsolutionandwereobtainedinthisreach.Thetypicaldielectricperformancesofår=63to85andQ×f=8500to13000GHzwereobtained.TheôfvaluesoftheBSTceramicscanbeadjustedfromanegative–12ppm/℃valuetoapositivevalue17ppm/℃asyincreasesfrom0to2.SecondphasesBa2Ti9O2andTiO2appearedduringsinteringproceduresandwereidentified.Notonlydielectricconstant,butalsoQ×fvaluesaredependentonthedensificationofBSTceramics.2.DesignandconstructionofmicrowaveceramicsdielectricfiltersMicrowavedielectricpropertiesofBa(2-x)Sm(4+2x/3)Ti9O26system(BST)(0.0≦x≦0.3)anddesignproceduresofmicrowavecoaxialdielectricbandpassfilterhavebeeninvestigatedinthiswork.DielectriccoaxialresonatorswithexcellentdielectricpropertiesofårII =75∼80,Q×fvalue=11000andgreattemperaturestabilityattheresonantfrequency.(t=~f0ppm/℃)wereused.Microwavebadnpassfiltersformobilecommunicationsystemwerelconstructedbyusingsuchcoaxialresonators.Bothair-gapcouplinganddirectcoupling4methodswereappliedasthecouplinginstrumentsinthetransformationofelectromagneticenergy.Comb-linetheorywasusedtoadjusttheresponseoffilters.Theresonantfrequencyofeachresonator,couplingcoefficientsbetweenadjacentresonators,andexternalqualityfactorwereadjustedtoachievethetargetspecifications.Themeasuredresponseswereinexcellentagreementwiththeexpectedresults.III 微波介電共振器及微波介電濾波器之研究研究生:陳耀忠指導教授:黃正亮國立成功大學電機工程研究所摘要微波介電共振器,具有高介電常數,低溫度飄移係數及高品質因數等特性,極適合應用於微波類比電路元件。本論文主要在於研發應用於微波類比電路中之共振器及濾波器,並將論文分成兩大研究方向:一、微波介電陶瓷之研發及備製:(a)利用CuO,ZnO和V2O5等不同的參雜物質來達到液相燒結的效果,並達到降低ReAlO3燒結溫度的目的。SmAlO3和NdAlO3兩組材料系統經過添加燒結促進劑後可將燒結溫度從1650℃降到1410℃~1430℃。SmAlO3再添加0.25wt/%CuO且燒結溫度微1430℃時,Q×f可達到51000GHz。在加入0.25wt/%ZnO且燒結溫度微1430℃時Q×f可達到41000GHz。ReAlO3系統在添加促進劑後其介電常數為19.6~22.5。頻率飄移係數為-30~-65ppm/℃。IV (b)利用tungsten-bronze-typestructure此種微架構之結構式,來研究、改良和探討Ba2-xSm4+2x/3Ti8+yO24+2y材料系統之微波特性。當y值固定為1,x值為0.0~0.3時,其Q×f值為9000~11000,介電常數值為75~80,頻率飄移係數為~0ppm/℃。當x值固定為0.1,y=0~2時,BST系統之Q×f值為8500~13000,介電常數值為63~85,頻率飄移係數為-12~17ppm/℃。二、微波介電陶瓷濾波器之設計及製作:(a)本研究以BST材料系統為原始材料,設計、分析並研製了適用於UHF和L頻帶的同軸型介電濾波器,其中包含了前段設計的基本考量,中段製程觀念、和後段的成型及測試。V ContentsAbstractIContentsVAcknowledgeVIIITableCaptionsIXFigureCaptionsXChapter1Introduction1Chapter2TheoryofDielectricResonatorand5MicrowaveFilters2-1TheoryofMicrowaveDielectricProperties52-2AnalysisofDielectricResonator82-3MeasurementofMicrowaveDielectricProperties112-4BasicTheoryofMicrowaveFilters13Chapter3LiquidPhaseSinteringandMicrowaveDielectric17PropertiesofReAlO3(Re=Sm,Nd)Ceramics3-1Introduction173-2ExperimentalProcedures18VI 3-2-1Samplepreparations183-2-2CharacteristicsAnalysisandMeasurementofMicrowave19DielectricProperties3-3ResultsandDiscussions203-3-1MicrostructureofSmAlO3Ceramics203-3-2MicrostructureofNdAlO3Ceramics223-3-3DensificationofSmAlO3Ceramics243-3-4DensificationofNdAlO3Ceramics253-3-5DielectricPropertiesofSmALO3Ceramics263-3-6DielectricPropertiesofNdAlO3Ceramics283-4.Conclusion31Chapter4MicrostructureandMicrowaveDielectric32PropertiesofBa2-xSm4+2/3xTi24+2yO8+yCeramics4-1Introduction324-2StructuralFormulaofTungsten-Bronze-Structure344-3ExperimentalProcedure354-3-1Samplepreparations354-3-2CharacteristicAnalysis364-4ResultsandDiscussion37VII 4-4-1MicrostructureofBa2-xSm4+2/3xTi24+2yO8+yceramics384-4-2DensificationofBa2-xSm4+2/3xTi24+2yO8+yceramics434-4-3MicrowaveDielectricPropertiesofBa2-xSm4+2/3xTi24+2yO8+y43ceramics4-5Conclusions47Chapter5DesignandFabricationofMicrowaveBandpass495-1Filter495-2Introduction505-3FabricationofCoaxialDielectricResonators525-4CouplingAnalyses545-5DesignandConstructionofFilter57FabricationandPerformanceofExperimentFilterChapter6ConclusionsandFutureWork596-1Conclusions596-2FutureWork61Reference63Tables72Figures75VIII TABLECAPTIONSTable1-1Propertiesrequiredformicrowavedielectricresonators72Table1-2-1Recentdevelopmentforthemicrowavedielectricmaterials73Table5-1Specificationsofacompactfilterneededtobeachieved.74IX FIGURECAPTIONSFig.2-1VariouspolarizationmechanismsinmaterialsFig.2-2ThestructureofshieldeddielectricresonatorFig.2-3ThepostmethodwitharadialdielectrometerformicrowavedielectricmeasurementsFig.2-4Threetypesoffilters(a)MaximallyFlat(b)Chebyshev(c)EllipticFunctionFig.2-5Alow-passprototypefilterFig.2-6(a)K-inverter(b)J-inverterFig.3-1FlowchartofexperimentprocedureofdielectricresonatorsFig.3-2X-raydiffractionpatternsofSmAlO3ceramicswith0.25wt%CuOsinteredatdifferenttemperatures.Fig.3-3X-raydiffractionpatternsofSmAlO3ceramicswith0.25wt%and0.5wt%additions(CuOandZnO)sinteredat1410℃.Fig.3-4X-raydiffractionpatternsofSmAlO3ceramicswithvariousamountofCuOadditionssinteredat1430℃.Fig.3-5aEDSanalysisofSmAlO3ceramicsforgeneralregions.Fig.3-5bEDSanalysisofSmAlO3ceramicsforspecificgrainswithSm4Al2O9secondphase.Fig.3-6aSEMmicrographofSmAlO3with0.5wt%CuOsinteredat1430℃.Fig.3-6bSEMmicrographofSmAlO3with1wt%CuOsinteredat1430℃Fig.3-6cSEMmicrographofSmAlO3with0.5wt%ZnOsinteredat1430℃X Fig.3-6dSEMmicrographofSmAlO3with1wt%ZnOsinteredat1430℃.Fig.3-7XRDpatternsofNdAlO3powderscalcinedatdifferenttemperaturesfor2h.Fig.3-8XRDpatternsofNdAlO3ceramicswith0.25wt%CuOsinteredatdifferenttemperatures.Fig.3-9XRDpatternsofNdAlO3ceramicswithvariousCuOconcentrationssinteredat1410℃.Fig.3-10aSEMofNdAlO3ceramicssinteredat1410℃with0.25wt%CuOaddedFig.3-10bSEMofNdAlO3ceramicssinteredat1410℃with0.5wt%CuOadded.Fig.3-10cSEMofNdAlO3ceramicssinteredat1410℃with0.75wt%CuOadded.Fig.3-10dSEMofNdAlO3ceramicssinteredat1410℃with1wt%CuOadded.Fig.3-11aSEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1390℃Fig.3-11bSEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1410℃Fig.3-11cSEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1430℃Fig.3-11dSEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1450℃Fig.3-12GrainsizeofNdAlO3ceramicssinteredat1410℃asfunctionofCuconcentration.Fig.3-13Relativedensitiesofaddition-sinteredSmAlO3ceramicsasafunctionofsinteringtemperatures.Fig.3-14RelativedensitiesofCuO-sinteredNdAlO3ceramicsasafunctionofsinteringtemperature.Fig.3-15DielectricconstantofSmAlO3ceramicswithdifferentadditionsasfunctionofXI sinteringtemperature.Fig.3-16Q×fvaluesofSmAlO3ceramicswithdifferentadditionsasafunctionofsinteringtemperature.Fig.3-17ThecompositiondependenceonôfofSmAlO3ceramicssinteredat1430℃.Fig.3-18DielectricconstantårofNdAlO3ceramicsasafunctionofsinteringtemperature.Fig.3-19Q×fvaluesofNdAlO3ceramicswithvariousCuOconcentrationsasfunctionofsinteringtemperature.Fig.3-20CompositiondependenceonôfofNdAlO3ceramicsasafunctionofsinteringtemperature.Fig.4-1TheSchematicdiagramofBSTceramicswithcomplexphaseoftungstenbronzestructureFig.4-2Projectionofthetungstenbronzestructureinthecplane.Theinsetshowsthepolardirectionsinorthorhombicstructure.Fig.4-3X-raydiffractionpatternsofBa(2-x)Sm(4+2/3x)Ti9O26ceramicssinteredat1360℃for4hourswithx=0.0,x=0.1,x=0.2,x=0.3.Fig.4-4aMicrographofBa(2-x)Sm(4+2/3x)Ti9O26ceramicswithx=0.1sinteredat1340℃Fig.4-4bMicrographofBa(2-x)Sm(4+2/3x)Ti9O26ceramicswithx=0.1sinteredat1360℃Fig.4-4cMicrographofBa(2-x)Sm(4+2/3x)Ti9O26ceramicswithx=0.1sinteredat1380℃XII Fig.4-5aPhotographofthesinteredsurfacewithsecondphaseBa2Ti9O20thatwasidentifiedwiththeenergydispersiveX-rayspectrometer(EDS)analysis.Fig.4-5bEnergydispersiveX-rayspectrometer(EDS)resultofthesinteredsurfaceshowninFig.4-5a.Fig.4-5cPhotographofthesinteredsurfacewithintermediatephaseSm2Ti2O7thatwasidentifiedwiththeenergydispersiveX-rayspectrometer(EDS)analysis.Fig.4-5dEnergydispersiveX-rayspectrometer(EDS)resultofthesinteredsurfaceshowninFig.4-5cFig.4-6Macrodifferentialthermalanalysis(DTA)oftheBa2-xSm4+2x/3Ti8+yO24+2yrawmaterialsFig.4-7X-raydiffractionpatternsofBa2-xSm4+2x/3Ti8+yO24+2y(x=0.1,y=1)ceramicscalcinedatvarioustemperatures.Fig.4-8X-raydiffractionpatternsofBa2-xSm4+2x/3Ti8+yO24+2yceramicssinteredattheirspecificdensifiedtemperatures(+and□markersareidentifiedasthemainphaseBaSm2Ti4O12,BaSm2Ti5O14).Fig.4-9aMicrographofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithy=0sinteredat1400℃Fig.4-9bMicrographofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithy=1sinteredat1370℃Fig.4-9cMicrographofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithy=2sinteredat1330℃Fig.4-10ApparentdensitiesofBa2-xSm4+2/3xTi9O26ceramicsasafunctionofsinteringtemperatureandcompositionXIII Fig.4-11ApparentdensitiesofBa2-xSm4+2x/3Ti8+yO24+2yceramicsasafunctionofsinteringtemperatureandcomposition(x=0.1)Fig.4-12Q×fvaluesofBa2-xSm4+2/3xTi9O26ceramicsasafunctionofsinteringtemperatureandcompositionFig.4-13Q×fvaluesofBa2-xSm4+2x/3Ti8+yO24+2yceramicsceramicsasafunctionofsinteringtemperatureandcomposition(x=0.1).Fig.4-14DielectricconstantofBa2-xSm4+2/3xTi9O26ceramicsasafunctionofsinteringtemperatureandcompositionFig.4-15DielectricconstantofBa2-xSm4+2x/3Ti8+yO24+2yceramicsasafunctionofsinteringtemperatureandcomposition(x=0.1).Fig.4-16TemperaturecoefficientoftheresonantfrequencyôfofBa2-xSm4+2/3xTi9O26ceramicssinteredat1360℃Fig.4-17TemperaturecoefficientôfofBa2-xSm4+2x/3Ti8+yO24+2yceramicssinteredattheirspecificsinteringtemperatureasafunctionofcomposition.Fig.5-1TheconfigurationofasinteredcoaxialresonatorwithcouplingapertureFig.5-2Theconfigurationofathree-stagecapacitivecouplingbandpassfilterFig.5-3TheequivalentcircuitofthefirststageloadedbytheexternalcircuitFig.5-4aTheequivalentcircuitoftwoadjacentresonatorswithcouplingcapacitorFig.5-4bTheequivalentcircuitoftwoadjacentresonatorswithcouplingcapacitorXIV Fig.5-5Theequivalentcircuitofthethree-stagebandpassfilterwiththeexternalcircuit.Fig.5-6aTheschematicdiagramoftotalcapacitancebetweentwoadjacentresonatorsandthegroundwhenthetransmissionlinesaredriveninoddmode.Fig.6bTheschematicdiagramoftotalcapacitancebetweentwoadjacentresonatorsandthegroundwhenthetransmissionlinesaredriveninevenmode.Fig.5-7aThefrequencyresponseoftheexperimentalbandpassfiltersbyair-gapcouplingFig.5-7bThefrequencyresponseoftheexperimentalbandpassfiltersbydirectcouplingXV Chapter1GeneralIntroductionDuetothedevelopmentincommercialwirelesstechnologiessuchascellularphones,globalpositionsystem,aswellasinsatellitebroadcastingsystemswasrapidly,howtodesignthehigh-qualitydevicestoimprovetheperformanceofthemobilecommunicationisveryimportant.Inordertoachievethepurposeofminiaturizationofthedimensionsofthedevicesandservethesystemworkwithhighefficiencyandstability,thematerialsformicrowaveresonatorsarerequiredtobeexcellentinthreedielectriccharacteristicsandtherequirementsareshowninTable1-1[1,2].Thefirstcharacteristicishighdielectricconstant(år),becausethemicrowavewavelengthisinverselyproportionaltoeofthedielectricmaterial(ë=ëo/e),whereëoistherrwavelengthinair.ThesecondoneishighQvalue,whichistheinverseofthedielectriclosstanä,isrequiredtoachievehighfrequencyselectivityandstabilityinmicrowavetransmitterandreceivercomponents.Thethird,temperaturecoefficientoftheresonantfrequency(ôf),isrequiredtobeascloseto0ppm/℃aspossible.Inthe1960s,TiO2andTi-basedceramicswerewidelyusedfordielectricresonator.However,thetemperaturecoefficientofitistoolargeforpracticalapplications.RelativeresearchanddevelopmentonthetemperaturestabilityoftheDRsweremade.Inthepastyears,severalsystemsofdielectricceramicsweredevelopedtoachievetherequirementsoftheceramics1 appliedatmicrowavefrequency.Thebriefdescriptionoftherecentdevelopmentforceramicsystemswiththeirdielectricconstantsrangingfrom10to90areasfollows:(1)Ba(Mg1/3Ta2/3)O3andBa(Zn1/3Ta2/3)O3aretheceramicsthathavethehighestQ×fvalues.TheirQ×fvaluesare100000~120000and200000~250000,respectively[3,4,13,14].(2)(Mg,Ca)TiO3ceramicsystemisuniversallyappliedfortemperaturecompensatingcapacitors.Theceramicmadeof0.95MgTiO3-0.05CaTiO3exhibitsexcellentdielectricproperties[5,25].(3)(Zr0.8Sn0.2)TiO4materialhasthehighQ×fvalueof50000andgreattemperaturestability.ThesinteringconditionsofZSTceramicswereimprovedbymodificationtocompositionadditions,andprocessing[16,17,23,24,27].(4)Ba-Re2O3-TiO2(Re=Sm,La,Nd)systemsbelongtotheperovskitestructureceramicsandhavebeenwidelystudiedforpracticalapplicationsatbroadbandfrequency[21,22,30,32-36,44-47].(5)Re2O3-Al2O3(La,Nd,Sm,etc.)systemsexhibithighQvalue(Q×f=~60000GHz).ThesystemsweremodifiedbyCuO,ZnOandV2O5toadjustthesinteringconditions[10,11,18].OtherrecentdevelopmentforthemicrowavedielectricceramicsareshowninTable1-2[6,12,15,20].HighQdielectricceramicresonatorswithhighdielectricconstantcanefficientlyreducethesizeoffilters.Furthermorethesmalltemperaturecoefficientcontributesthesystemhighstability.Withthecharacteristics,dielectricresonatorswereinvestigatedandwidelyusedin2 thefabricationsofmicrowavefiltersandoscillators[48-50,59-63].Abriefdescriptionofthethesis’contentsexpressedasfollowing.IntroductionofthischapterreviewsthecharacteristicsrequiredofmicrowaveDRsandgivesanoverviewofthedissertation.Dielectrictheorem,microwavedielectricmeasurementofDRsandrelativetheoryofmicrowavefilterarereviewedinChapter2.Inordertolowerthesinteringthesinteringtemperatureandimprovethemicrowavedielectricproperties,liquidphasesuchasCuO,ZnOandV2O5wereaddedintheRe2O3-Al2O3(Re=Sm,Nd)ceramics.ThemicrowavedielectricpropertiesofRe2O3-Al2O3ceramicsweredependentontherawmaterials,theadditives,andthemicrostructure.TheeffectofCuO,ZnOandV2O5additiononthemicrostructuresandthemicrowavedielectricpropertiesofReAlO3ceramicswereinvestigatedinChapter3[10-31].Thetungsten-bronze-typeBaO-Sm2O3-kTiO2(k=4~5)solidsolutionsarewellknownasmicrowavedielectricceramicresonatorswithhighdielectricconstant[32-47].TheoptimumsubstitutionofBaforSmwasobtainedbasedonthestructuralformula.ThedecreaseofsinteringtemperatureandadjustmentoftemperaturecoefficientattheresonantfrequencytozerowereachievedbyincreaseofTiamount.Therelationshipsbetweenmicrostructureandmicrowavedielectricpropertiesbasedonthetungsten-bronze-typestructuralformulawerestudiedandinvestigatedinChapter4.InChapter5,dielectricresonatorsappliedinUHF~LBandwerefabricated.TheDRsof3 BaO-Sm2O3-TiO2withhighdielectricconstant,hightemperaturestabilityandhighQ×fvalueswereappliedintheconstructionofabandpassfilter.Microwavebandpassfiltersformobilelcommunicationsystemwereconstructedbyusingsuchcoaxialresonators.Bothair-gap4couplinganddirectcouplingmethodswereappliedasthecouplinginstrumentsinthetransformationofelectromagneticenergy.Amethodofdesigningcapacitivecoupledbandpassfilterswitharbitrarilystructuredresonatorswasinvestigatedandestablished[48-63].AtlasttheconclusionsandthefutureworkaresummarizedinChapter6.4 Chapter2TheoryofDielectricResonatorandMicrowaveFilters2-1TheoryofMicrowaveDielectricPropertiesThedielectricpropertiesofmaterialsareresultedfromthepolarizationphenomenonduetothechargesinthematerialsunderexternalelectricfield.Therearefourtypesofpolarizablemechanisms.Theyareelectronpolarization,ionicpolarization,orientationpolarizationandspacechargepolarization,asshowninFig.2-1.Thepolarizationofmaterials(t)canbeindicatedas:αt=αe+αi+αo+αs(2-1)whereαtisthetotalpolaribilityαeistheelectronpolaribilityαiistheionicpolaribilityαoistheorientationpolaribilityαsisthespacechargepolaribilityThedominantpolarizablemechanismofmaterialisuncertain.Itisveryrelativetotheoperatingfrequency.Inmicrowavefrequency,thepolarizablemechanismscontributetodielectricconstantismostlyionicpolarizationforanisotropicdielectricmaterial.Itoriginatesinthedisplacementofionsonanelectricfieldfromequilibriumposition.The5 phenomenahadbeenexplainedaccordingtoclassicaldispersiontheory[1,2],whichdescribedthemechanismsofionicpolarizationinsolidbyconsideringasimplemodelofLorenzoscillator.TheactionofLorenzoscillatorcanberepresentedasfollowing:2dxdx2m+mr+mwx=q×E×exp(jwt)(2-2)2oodtdtwheremisthemassofionic.xisthedistancebetweenionicsγisdampingcoefficient.ωoisnaturalresonantfrequency.qisthechargeontheionic.│Eo│isthemagnitudeofexternalelectricfield.ωisthefrequencyofexternalelectricfield.Thecomplexdielectricconstantε(ω)canbeobtainedasfollowing:2qe(w)=4pN+1(2-3)22m[(w-w)+jwr]oLet2224pNq(wo-w)e(w)=()×+1(2-4)122222m(w-w)+wg06 24pNqwge(w)=()×(2-5)22222m(w-w)+wg0Soe(w)=e-je(2-6)12whereNistheionicvolumedensity.e(w)isthepolarizationpartinmaterial.1e(w)isthedielectriclossfactorinmaterial.2Inmicrowavefrequencyrage,Eq.(2-4)and(2-5)canbeapproximatedby:24pNqe»(2-7)12mw0e2wgtand=»(2-8)2ew10Consequently,Eq.(2-7)showsthatthedielectricconstantεrisindependentoffrequency.Equation(2-8)exposesthatthetanδinmaterialsincreasedwithincreasingfrequency.Thelossisresultedfromaharmonicinteractionorlatticevibration.Actually,itisalsoproducedbyporosity,secondphase,etc.7 2-2AnalysisofDielectricResonatorConsiderthesystemofFig.2-2,acylindricaldielectricresonatorwithheightL,radiusa,dielectricconstantεr,issituatedonadielectricsubstratewithdielectricconstantεsofthicknessL2,thetopmetalcoverisseparatedatdistanceL1abovetheresonator.Mostoftheelectromagneticenergyisstoredinregion1andthefielddecaysexponentiallyinregion2,3,and4.Withasmallamountofenergybeingconfinedinregionsof2~4andevenlessamountofenergyinregions5and6,onlylittleerror,therefore,isintroducedinthecalculationofresonantcharacteristicsifoneignoresthefieldsin5and6.Fromtheelectromagneticwavetheory,boththeelectricandmagneticfieldofinsideandoutsideofthedielectricmaterialmustsatisfytheMaxwellequationandboundaryconditions.Hence,itisnecessarytomatchthefieldonlyontheboundariesofregion1.Thefollowingcharacteristicequationswereobtained:222region1kp1+β=k0εr(2-9)region2222(2-10)kp1-kz2=k0εsregion3222(2-11)kp1-kz3=k0region4222(2-12)β-kz4=k08 wherek=wue0000Thetranscendentaleigenvalueequationcanbeexpressedas:2F(x)×F(x)-F(x)=0(2-13)123HereJ'(x)K'(x)mmF(x)=+1x×J(x)e×y×K(y)mrmJ'(x)K'(x)mmF(x)=+2x×J(x)y×K(y)mmmb11F(x)=(+)322kexyorwherex=kñ1áandy=kñ4áaretheeigenvaluesofJmandKm,respectively.JmistheBesselfunctionofthefirstkindwithm-thorder.KmisthemodifiedBesselfunctionofthesecondkindwithm-thorder.kñ1istheradialpropagationconstantinsidetheDR(ña).βistheaxialpropagationconstantinsideheight(L)oftheDR.kz2istheaxialattenuationconstantinregion2.kz3istheaxialattenuationconstantinregion3.TheresonantmodesofTEmnp,TMmnp,andHEMmnpindielectricresonatorcanbeanalyzedfromeq.(2-13):9 (1)TMo,n,,p+ämodes:F1(χ)=0keke-1z3r-1z2rbL=tan[×tanh(k×L)]+tan[×tanh(kL)]+pp(2-14)z31z22bbes(2)TEo,n,,p+ämodes:F2(χ)=0kek-1z3r-1z2bL=tan[×coth(k×L)]+tan[×coth(kL)]+pp(2-15)z31z22bb(3)HEMo,n,,p+ämodes:2F1(χ)‧F2(χ)-F3(χ)=0(i)ForHEMo,2n,,p+ämodes,whichcontainstheirmostenergyintheTEpart,arealsocalledquasi-TEmodes:(ii)kek-1z3r-1z2bL=tan[×coth(k×L)]+tan[×coth(kL)]+pp(2-16)z31z22bb(ii)ForHEMo,2n+1,,p+ämodes,whichcontainstheirmostenergyintheTMpart,arealsocalledquasi-TMmodes:keke-1z3r-1z2rbL=tan[×tanh(kL)]+tan[×tanh(kL)]+pp(2-17)z31z22bbesIngeneralmeasurement,L1=L2=0,fromeq.(2-14)and(2-15):lgp×()=L(2-18)210 Inashieldingcondition(L1orL2¹0),theresonantmodesofTMonä,TEonäandHEMonä(m¹0)canbeexited,whereäislessthanunity.ä=(âL)/ð(2-19)2-3MeasurementofMicrowaveDielectricPropertiesThemicrowavemeasurementtechniquescanbedividedintotwogroups:1ResonanceTechniques,and2TransmissionTechniques.Usually,thedielectricpropertymeasurementbytheresonancetechniqueshashigheraccuracythanthatbythetransmissiontechniquesespeciallyfordielectricloss.Threedifferentdielectricresonancemethodsarenowusedi)PostResonanceTechnique,ii)CylinderCavityResonanceTechnique,andiii)WaveguideReflectionResonanceTechnique.Thedifferencesbetweenthosetechniquesarebasedonthedifferentgeometricalarrangementsofmetalshields.PostResonanceTechniquewasoriginallysuggestedbyHakkiandColemanin1960[7].Thismethodhasbeenwidelyusedandhasbecomethemostpopulardielectricresonancemethodformeasuringthecomplexpermittivityofhighdielectricconstantandlowlossmaterialsinmicrowaveregions.AcylindricaldielectricrodisplacedbetweentwoparallelmetalplatesasshowninFigure2-3.Twocouplingantennaswereusedtocouplethepowerinandout.Therearevariousdielectricresonancetechniquesformeasuringthedielectric11 propertiesofdielectricsamples.ThelowestTEmodeofacylindricaldielectricsampleisalwaysusedformeasurementsbecauseitiseasytoidentifytheresonantpeak,andthecalculationequationsforthedielectricpropertiesaremoreeasilyderivedthanthoseofothermodes.Theresonantfrequencyf0,thehalfpowerbandwidth,theinsertionlossS12,andthedimensionsofthespecimenwererecordedforthecalculationofthecomplexpermittivity.Thetotallossofthesystemisthesummationofthedielectriclossofthesample,theconductorlossofthemetalshields,thelossofthesurroundingair,andtheradiationloss.Theaccuratecalculationofconductorlossisacriticalpointforcorrectcomputationofdielectricloss.Therefore,Kobayashietal,suggestedamethodusingtwocylindricalsamplescutfromasamerod[8],onesamplewiththicknessNtimes(NisforTE01Nmode)theothersample.TheresonantfrequencyoftheTE011modeoftheshortsampleisthesameasthatoftheTE01Nmodeofthelongsample.Theyderivedtheequationforcalculatingthesurfaceresistancebasedontheassumptionthatthetwosampleshavethesamelosstangentvalueatthesamefrequency.Thelossofthesurroundingairdependsontheambienthumidityandthedensityofthesample.Theradiationlosscanbealwaysneglected.Acomputerprogramwasusedforthecalculationsofthedielectricconstantandthedielectricloss.Themainadvantageforthispostresonancemethodisthatequationsshownaboveforthecalculationsofdielectricpropertieswerewelldeveloped,muchsimplerthanotherdielectricresonancemethods.Inaddition,theaccuracyofthoseequationsishigh.Therefore,the12 techniqueisstillusedbyalotofpeople.2-4BasicTheoriesofMicrowaveFiltersFiltersareusedinallfrequencyrangestoprovideasnearlyperfecttransmissionaspossibleforsignalsfallingwithindesiredpassbandfrequencyranges,togetherwithrejectionofthosesignalsandnoiseoutsidethedesiredfrequencybands.Filtersfallintothreemaincategories:(1)low-passfilters(2)high-passfiltersand(3)bandpassfilters.Accordingtothetypesofrippleinthepassbandandslopeinthestopband,thefiltersdivideintothreetypes:(a)MaximallyFlatFilter,(b)EqualrippleFilter(Chebyshev)and(c)EllpticFunctionFilter,asshowninFig.2-4Insertionlossistheinternallossthroughthefilterinthebandtobepassed.Nodevicewillhavezerolossthroughitsimplybecausethereisenergypassingthroughatransmissionline.Thereis,therefore,asmalllosseveninthebandtobepassed.Thepassbandisthebandoffrequenciesthatareaffectedonlybytheinsertionlossofthefilter.Therejectiondescribesthattheundesiredfrequenciesareattenuated.Todesignabandpassfilter,thetargetcharacteristicsofbandpassfilter,suchasthepassbandcenterfrequency,bandwidth,insertionloss,andrejectionslopemustbedefinedfirst.Basedonthetargetcharacteristics,thenumberofpoles,couplingcoefficients,andfiltersize13 aredefined.Theequivalentcircuitofbandpassfilteriscomputed,andthestructureofbandpassfilterisdesignedaccordingtotheequivalentcircuit.Thenumberofpolesi.e.theelementnumberoffilter,isdeterminedasfollowed:-1(La)(Lar/10)cosh[1010-1/(10-1]n³(2-20)-1cosh(w'/w')a1wherew'istheoperatingfrequencyaw'istheripplecutofffrequency1Lar=passbandripple(dB)La=attention(dB)atoperationfrequencyAlow-passprototypefilterisshowninFig.2-5.Thegeneratorimpedanceischosenequalto1ohm.Oneofthefiltersisdualtotheother.Bothfilterscanbedesignedtogivesamepowerlossratio.ForChebyshevresponseinpassband,theladdernetworkissymmetricforanoddnumberofelements.Theelementvaluesg0,g1,…gn,gn+1ofthelow-passprototypefiltersaredefinesfollowed:Larb=ln(coth)(2-21)17.37bg=sinh()(2-22)2n(2k-1)pa=sin[]k=1,2,3…n(2-23)k2n22kpb=g+sin()k=1,2,3…n(2-24)kn2a1g=(2-25)1g14 4aak-1kg=k=2,3,4…n(2-26)kbgk-1k-1gn+1=1fornodd2bg=coth()forneven(2-27)n+14wheren:elementnumbersofreactanceLar:bandpasripple(dB)Toobtainthecouplingcoefficients,theJ,KinvertersareusedasshowninFig.2-6.ForKinverterwdX(w)ojx=w=wohms(2-28)jo2dwRxwA1K=(2-29)01gg01xxjj+1K=wj=1,2,……..,n-1(2-30)j,J+1ggjj+1RXwBnK=(1-14)(2-31)n,n+1ggnn+1whereRa、Rb=sourceloadω=fractionalbandwidthForJinverter:wdB(w)ojb=w=wohms(2-32)jo2dwGbwA1J=(2-33)01gg01bbjj+1J=w(2-34)j,J+1ggjj+115 GbwBnJ=(2-35)n,n+1ggnn+1whereGa,Gb=sourceconductanceTheinsertionlossofmulti-resonatorsisdeterminedas:fngoiL=4.343å(2-36)BWi=1QuiwhereF0=centerfrequencyBW=3dBbandwidththQi=iresonator’sunloadedQthgi=iprototypevaluefromthedesigntables16 Chapter3LiquidPhaseSinteringandMicrowaveDielectricPropertiesofReAlO3(Re=Sm,Nd)Ceramics3-1IntroductionCommercialwirelesstechnologies,suchascellularphones,directbroadcastingsatellitesandglobalpositionsystems,havebeenmakingrapidprogressduetotheimprovedperformanceofdielectricresonatorsatmicrowavefrequencies.Requirementsforthesedielectricresonatorshavetobecombinedwithahighdielectricconstantårforpossiblesizeminiaturizationandalowdielectriclossforfrequencyselectivityandlowsignalattenuation.Thethirdcharacteristicoftheresonatorisasmalltemperaturecoefficientattheresonantfrequencyfortemperaturestablecircuit.Aresearchonthemicrowavedielectricpropertiesoftherare-earthaluminateswasinvestigatedbyS.Y.Choetal.fortheirgreatcharacteristicsatX-bandapplications[10,11].SmAlO3andNdAlO3ceramicsexhibitedgoodmicrowavedielectricpropertiesofhighdielectricconstant(20~22.5)andgoodqualityfactor(Q×f60000~65000GHz).TheReAlO3ceramicshasbeenusedassubstrateformicrowavecomponentssinceitprovidesahighqualityfactor,excellentlatticematchingandagoodmatchingforthermalexpansion.However,ReAlO3ceramicsrequiredaveryhighsinteringtemperature(1650℃)andweredifficulttobewelldensifiedwithoutanyadditions.For17 practicalapplications,itisnecessarytoreducethesinteringtemperatureofReAlO3ceramics.Recently,low-meltingaddition,chemicalprocessing,andusingstartingmaterialswithsmallerparticlesizesarecommonlyusedinreducingthesinteringtemperatureofdielectricceramics[12-31].Theliquid-phasesinteringbyglassadditionwasfoundtoeffectivelylowerthefiringtemperature,whileitalsodecreasedthemicrowavedielectricpropertiesoftheceramicsduetothelowdensitieswithglassaids[15-17].Anothermethodappliedforlowingthesinteringtemperaturewaschemicalprocessing[12-14],whichoftenrequiredaflexibleprocedurethatwouldincreasethecostandtimeinfabrication.Inthepast,liquidphasefluxsuchasB2O3,CuO,V2O5andBi2O3wereintroducedassinteringaidsinloweringthesinteringtemperatureofceramicsandobtaininggooddielectricproperties.Inthisstudy,CuO,V2O5andZnOwereaddedinReAlO3ceramicstolowerthesinteringtemperature.TheinfluenceofCuO,V2O5andZnOadditionsonthesinteringtemperaturesandthemicrowavedielectricpropertiesofReAlO3ceramicswerealsobeeninvestigatedinthisstudy[18-31].3-2Experimentalprocedures3-2-1SamplepreparationsSamplesofReAlO3werepreparedbyconventionalsolid-statemethodsfromindividualreagent-gradeoxidepowders:Sm2O3,Nd2O3andAl2O3.Theserawpowderswereweighedaccordingtothedesiredstoichiometrywithvariousamountsofadditions,CuO,V2O5andZnOindividually.Thestartingmaterialsweremilledinaplasticjarwithzirconium18 ballsunderpurewaterfor6hours.Themixturesweredriedandforcedthrougha320-meshsieveandthencalcinedat1150℃for2hours,dried,ball-milledandgranulatedbysievingthrough175mesh.Thecalcinedpowderswereremilledfor12hourswithsuitableamountof3%solutionofpolyvinylalcohol(PVA)asthebinderandcompactedintodisks11mmindiameterby5mminheight.Afterdebinding,thedisksweresinteredatthetemperaturefrom1390℃to1470℃inairatmospherefor2hourswiththeheatingrate10℃/min.TheflowchartofDRs’experimentalproceduresisshowninFig.3-1.3-2-2CharacteristicsAnalysisandMeasurementofMicrowaveDielectricPropertiesThecrystallinephasesofthesinteredceramicswereidentifiedbyX-raydiffractionpatternanalysis.Microstructureobservationsofthesinteredsurfaceswereperformedbyscanningelectronmicroscopy(SEM).Energydispersivespectroscopy(EDS)wasalsoperformedtoidentifytheexistencesofsecondphases.ThebulkdensitiesofsinteredsamplesweremeasuredbytheArchimedesmethod.Microwavedielectricpropertieswerecalculatedwithsizesofthesampleandthe’resonantfrequencybyusingtheHakkiandColemansdielectricresonatormethodunderTE011andTE01ämodes[7-9].Acylindricaldielectricresonatorwaspositionedbetweentwobrassplatesconnectedtothemeasuringsystem.AHP8757DnetworkanalyzerandaHP8350Bsweeposcillatorwereemployedinthemeasurement.Thedielectricconstantårwas19 approximatedusingthevaluesofresonantfrequencyandthesizeofthefireddisk.Sincetheshrinkageofallthespecimenswasnotuniform,theQvaluesweremeasuredatdifferentfrequencies(9.5~10.5GHz).Thetemperaturecoefficientofresonantfrequency(ôf)representsthetemperaturedependenceoftheresonantfrequencyandistypicallydefinedas:tt=-(a+e)(3-1)f2t=t+a(3-2)cewhereáisthethermalexpansioncoefficient,tisthetemperaturecoefficientoftheedielectricconstantandtisthetemperaturecoefficientofthecapacitance.cTemperaturecoefficientofresonantfrequency(tf)wasmeasuredbychangingtemperaturemainlyfrom20℃~80℃andcalculatedfromtheequation:f80-f206tf=´10(ppm/℃)(3-3)f´6020wherefistheresonantfrequencyofthedielectricresonatorattemperatureT℃.T3-3Resultsanddiscussions3-3-1MicrostructureofSmAlO3ceramicsFig.3-2showstheXRDpatternofSmAlO3ceramicswith0.25wt.%CuOadditionssinteredatdifferenttemperaturesfor2hours.Theexistingphasesateachtemperaturewere20 observedasillustratedinthefigure.HomogeneousSmAlO3phasewithtetragonalstructurewasobtainedbelow1450℃.Withtheincreaseofsinteringtemperature,themixedpowdersreactedmoreandtheintensityofSmAlO3phaseenhanced.ThecrystallinephaseofSmAlO3ceramicswithdifferentamountofCuOandZnOadditionssinteredat1410℃for2hourswereidentified.TheXRDdiffractionpatternsshowninFig.3-3.TheSmAlO3phasesexistedasthemaincrystallinephasesandnoothercrystallinephasewasformedforCuO-sinteredandZnO-sinteredceramicsascomparingtotheXRDspectraofpureSmAlO3phases.ItimpliedthatsinglephaseSmAlO3couldbeobtainedwithadditionsunder1410℃atthelevelof0.25-0.5wt%additions.Fig.3-4showstheX-raydiffractionpatternsofSmAlO3ceramicswithvariousamountsofCuOadditionssinteredat1430℃.XRDshowedthatSmAlO3ceramicswithCuOadditionexhibitedalmostsinglephasesincethatthedetectionofaminorphasebyX-rayisextremelydifficult.AlthoughsomeofthemwereoverlappingtothemainphasesanddifficulttoidentifyfromXRDdiffractionpatterns,however,secondphaseSm4Al2O9wasdetectedbyquantitativeanalysis.Toprovetheexistenceofsecondphase,EDSanalysisofSmAlO3ceramicswith0.75wt%additionwasperformedanddemonstratedinFig.3-5a,b.Sincethegrainmorphologywasalmostsimilar,thegrainsofdifferentphasesweredistinguishedbybackelectronimage(BEI).Afterenoughtrials,theconstituentratioofSmandAlwereobtainedandlocatedat45.62:46.67(%)forthegeneralregionsasshowedinFig.4a.ThesecondphasedetectedbyEDSspectrawasSmrichascomparedwiththematrix21 grains.Atcertainspecificgrains,therelativeratioofSmandAlwas32.71:62:39(%)typically,i.e.theratioofSm:Alwas2:1.ItsuggestedtheexistenceofsecondphaseSm4Al2O9.TheadditionsCuOandZnOdidnotdiffuseintograinsbutconcentratedontheboundaries.TheSEMphotographsofSmAlO3ceramicswithdifferentadditivessinteredat1430℃for2hourswereillustratedinFig.3-6abcd.Allsamplesshowedhomogeneousgrainsize.Thegrainsizeslightlyincreasedwiththesinteringtemperatureaswellastheadditivesduetotheliquidphaseeffect.Theliquidphasewassuggestedcausedbyeutecticreaction.Theadditives,CuOandZnOintheSmAlO3ceramicsappearedonthesinteredsurfaceratherthanatthegrainboundary.ThatwasexaminefromSEManddetectedbytheEDSquantityanalysis.3-3-2MicrostructureofNdAlO3ceramicsInordertoexaminethechemistryofcalcinedNdAlO3powdersandselectasuitablecalciningtemperature,thestartingmaterialswerepreparedat1050℃,1150℃and1250℃.Fig.3-7showstheXRDpatternofNdAlO3powderscalcinedatdifferenttemperaturesfor2h.Theexistingphasesateachcalciningtemperaturewereobservedasillustratedinthefigure.Withincreasingcalciningtemperature,themixedpowdersreactedmoreandtheintensityofmajorNdAlO3phaseswasenhanced.HomogeneousNdAlO3phasewitharhombohedralstructurecouldbeobtainedat1150℃.However,thesecondphases22 coexistwiththemajorphaseandperhapsseriouslyaffectthemicrowavedielectricpropertiesofNdAlO3ceramics.Thiswasthereasonforchoosing1250℃asthecalciningtemperature.Fig.3-8showstheXRDpatternofNdAlO3ceramicswith0.25wt%CuOadditionsinteredatdifferenttemperaturesfor2h.Withtheincreaseofsinteringtemperature,theintensityoftheNdAlO3phasewasenhanced.Asecondphasewasnotobservedinallcases.ThecrystallinephaseofNdAlO3ceramicswithdifferentamountsofCuOconcentrationsinteredat1410℃for2hwereidentifiedandtheXRDdiffractionpatternsareshowninFig.3-9.TheNdAlO3phasesexistedasthemaincrystallinephasesandnoothercrystallinephasewasformedforCuO-sinteredceramicsascomparedtotheXRDspectraofpureNdAlO3phases,implyingthatsingle-phaseNdAlO3couldbeobtainedwithCuOadditions(0.25-0.5wt%)at1410℃.ThedataalsoshowthatNdAlO3ceramicswithCuOadditionexhibitedalmostasinglephasesincethedetectionofaminorphasebyXRDisextremelydifficult.AlthoughsomeofthemoverlappedthemainphasesandweredifficulttoidentifyfromXRDdiffractionpatterns,secondphasesNdAl11O18andNd4Al2O9weredetectedbyquantityanalysis.Toconfirmtheexistenceofsecondphases,EDSanalysisofNdAlO3ceramicswith0.75wt%and1wt%additionswereperformed.Sincethegrainmorphologywassimilar,thegrainsofdifferentphasesweredistinguishedbybackscatteredelectronimage(BEI).Aftersufficienttrials,theconstituentratioofNdandAlwasobtainedandwas45.62:46.67(%)forthegeneralregions.ThesecondphasewasdetectedbyEDSspectraforcertainspecificgrains,andtherelative23 ratioofNdandAlsuggestedtheexistenceofsecondphasesNd4Al2O9andNdAl11O18.SEMmicrographsofNdAlO3ceramicssinteredat1410℃for2hwithdifferentCuOconcentrationarepresentedinFig.3-10Allsamplesshowedhomogeneousgrainsize.ThegrainsizeincreasedlinearlywiththeamountofCuOaddedduetotheliquid-phaseeffect[18-20].Theliquidphasewasconsideredtobecausedbyeutecticreaction.SEMphotographsofNdAlO3ceramicssinteredatdifferenttemperaturesfor2hwith0.75wt%CuOadditionsareshowninFig.3-11.Thegrainsizeincreasedslightlywiththeincreasingsinteringtemperature.Itwaseasilydeterminedthatthehighersinteringtemperaturesresultedinsuperiordensification.TheaddedCuOintotheNdAlO3ceramicssegregatedonthesinteredsurfacemorethaninsidetheceramicbody,asdeterminedbySEMandalsodetectedbytheEDSquantityanalysis.ThegrainsizesofNdAlO3ceramicswithdifferentCuOconcentrationasafunctionofsinteringtemperatureareillustratedinFig.3-12.ThegrainsizesincreasedwithincreasingCuOconcentrationasshowninFig.3-10.Therelationshipbetweengrainsizeandsinteringtemperaturerevealedthesametrendasthatbetweenrelativedensityandsinteringtemperature.Grainsizesof1.8~4.8mmwereobtainedinthisexperiment.ItisbelievedthatthegrainwettabilityisdirectlydependentontheamountofCuOadditions.3-3-3DensificationofSmAlO3ceramicsTherelativedensitiesofadditions-sinteredSmAlO3ceramicsasafunctionofsintering24 temperatureswereindicatedinFig.3-13.ThedensitiesofSmAlO3ceramicsincreasedwithincreasingCuOandZnOadditionsupto1wt%.TheTDsofSmAlO3ceramicswithCuOsinteredat1410℃increasedfrom95.2%to98.36%astheadditionsincreasedfrom0.25wt%to1wt%whiletheTDsofZnO-sinteredSmAlO3ceramicsincreasedfrom95.15%to97.68%,respectively.Thedensityincreaseswiththeincreaseofadditionswasduetoenlargedgrainsize.TherelativedensitiesofSmAlO3ceramicswith0.25wt%and0.75wt%CuOincreasedfrom93.5%to96%and95.36%to98.16%,respectively,asthesinteringtemperatureincreasedfrom1390℃to1450℃.TheZnO-sinteredSmAlO3ceramicsshowedthesimilartrend.Afterreachingamaximumvalueatvicinityof1430~1450℃,theTDsofSmAlO3decreased.ItwaseasytofindthatTDsatthelevelof95~98%couldbeobtainedwithdifferentkindsandvariousamountofadditionsatsinteringtemperaturesfrom1410℃to1430℃.ThegreatdensificationatlowersinteringtemperaturewasachievedbytheliquidphaseeffectofadditionssincethemeltingtemperatureofCuOandZnOaremuchlowerthanthesinteringtemperatureofthepureSmAlO3[18-20,14-15].Thesinteringtemperature1410℃~1450℃wereselectedsincethatallthesampleshavedensitieshigherthan95%theorydensities.3-3-4DensificationofNdAlO3ceramicsTherelativedensitiesofCuO-sinteredNdAlO3ceramicsasafunctionofsintering25 temperatureareindicatedinFig.3-14.ThedensitiesofNdAlO3ceramicsincreasedwithincreasingCuOconcentrationupto1wt%.Therelativedensities(RDs)ofNdAlO3ceramicssinteredat1430℃increasedfrom95.2%to98.26%astheCuOadditionincreasedfrom0.25wt%to1wt%.TherelativedensitiesofNdAlO3ceramicswith0.25wt%and1wt%CuOincreasedfrom93.5%to95.36%and96%to98.26%,respectively,asthesinteringtemperatureincreasedfrom1390℃to1450℃.Afterreachingamaximumvalueinthevicinityof1410~1430℃,theRDsofNdAlO3decreasedwithincreasingtemperature.ItwaseasilydeterminedthatRDsatthelevelof94~98%couldbeobtainedwithvariousamountofadditionsatsinteringtemperaturesof1410~1430℃.Themarkeddensificationatlowersinteringtemperatureswasachievedbytheliquid-phaseeffectofCuOaddition.Thesinteringtemperaturesof1410~1430℃wereselectedsinceallofthesamplespossessedtheoreticaldensitieshigherthan95%.3-3-5DielectricpropertiesofSmAlO3ceramicsFig.3-15showedthedielectricconstantofSmAlO3ceramicswithdifferentadditivesasafunctionofsinteringtemperature.Therelationshipsbetweenårvaluesandsinteringtemperaturesrevealthesametrendwiththatbetweendensitiesandsinteringtemperatures.Theincreaseofårcouldbeexplainedowingtohigherdensitiessincehigherdensitiesmeanslowerpore.TheårvaluesofdensifiedSmAlO3ceramicsrangedfrom19.4to20.6.26 Manyfactorswerebelievedtoaffectthemicrowavedielectriclossandcouldbedividedintotwofields,theintrinsiclossandextrinsicloss.Theintrinsiclossesweremainlycausedbylatticevariationmodeswhiletheextrinsiclossesweredominatedbysecondphases,oxygenvacancies,grainsizesanddensificationorporosity.Interfacialpolarizationwasthoughttoplayanimportantroleinporousmaterials.Fig.3-16illustratestheQ×fvaluesofSmAlO3ceramicswithdifferentadditivesasafunctionofsinteringtemperature.TheQ×fvaluesofSmAlO3ceramicsincreasewiththeincreaseofsinteringtemperature.ForCuO-sinteredSmAlO3,theQ×fvaluesmaintainedgoodpropertiesatlowsinteringtemperatures.TheQ×fvaluesreachedamaximumvalveof51000(GHz)at1430℃.TheZnO-sinteredSmAlO3hasamaximumQ×fvalueof41000with0.25wt%additionsinteredat1450℃.TheQ×fvalueofSmAlO3ceramicsdecreasedwithfurtherincreaseintheadditiveamountandchangefrom51000(0.25wt%)to12000(1wt%)and41000(0.25wt%)to9000(1wt%)inCuO-andZnO-dopedcases,respectively.Infact,theeffectsofCuOandZnOadditionsonmicrowavedielectriccharacteristicofSmAlO3mightdependonthechemistryoftheadditions,therelatedchemistryreactions,thephasechangesduringsinteringandthefinaldensity.Ingeneral,theQ×fvalueswereindependentofthedensityortheporosityforTDs>95%.ItcouldbeconcludedthattheQ×fvalueofSmAlO3ceramicswereindependentofthedensificationsincethedensitiesofthesamplesinvestigatedinthisstudieswerehigherthan95%TDs.GrainsizesmightbesuggestedtoaffecttheQ×fvalueofSmAlO3ceramicsdueto27 largergrainsresultedinlessgrainboundary,whichmeantlesslatticemismatchandlowerdielectricloss.AfteralltheexistenceofsecondphaseSm4Al2O9,whichhasaQ×fvaluelessthan10000(GHz),playedanimportantroleindeterminingthecharacteristicofqualityfactor.AstheobservationsfromXRDdiffractionsanddetectionsofEDSanalysis,thesecondphaseappearedattheadditionlevelover0.5wt%andseriouslyaffectedtheQ×fvalueofSmAlO3ceramics.Fig.3-17showsthecompositiondependenceofôfintheSmAlO3ceramicssinteredat1430℃.Thetemperaturecoefficientofresonantfrequencywaswellknownrelatedtothecomposition.TheôfvalueofZnO-sinteredSmAlO3ceramicsexhibitednosignificantchangewithdifferentdopinglevelat1430℃.However,itvariedfrom-45to-65ppm/℃astheamountofCuOadditionsincreasedfrom0.25to1wt%.3-3-6DielectricpropertiesofNdAlO3ceramicsFig.3-18showsthedielectricconstantofNdAlO3ceramicswithdifferentCuOconcentrationsasafunctionofsinteringtemperature.Therelationshipsbetweenårvaluesandsinteringtemperaturesrevealthesametrendasthatbetweendensityandsinteringtemperature.Theincreaseofårcouldbeexplainedasbeingduetohigherdensitiessincehigherdensitiesmeanfewerpores.TheårvaluesofwelldensifiedNdAlO3ceramicsexhibitednosignificantdifferenceswithvariousCuOconcentrationsatdifferentsinteringtemperaturesandranged28 from21.5to22.6.Manyfactorsarebelievedtoaffectthemicrowavedielectriclossandcanbedividedintotwocategories,theintrinsiclossandtheextrinsicloss.Theintrinsiclossesaremainlycausedbylatticevibrationmodeswhiletheextrinsiclossesaredominatedbysecondphases,oxygenvacancies,grainsizesanddensificationorporosity.Interfacialpolarizationwasthoughttoplayanimportantroleintheporosityofmaterials.Fig.3-19illustratestheQ×fvaluesofNdAlO3ceramicswithdifferentCuOconcentrationasafunctionofsinteringtemperature.TheQ×fvaluesofNdalO3ceramicsincreasewiththeincreasingsinteringtemperature.TheQ×fvaluesofCuO-sinteredNdAlO3stablyshowedgoodpropertiesatlowsinteringtemperatures.TheQ×fvaluesreachedamaximumvalueof63000GHzat1410~1430℃.TheQ×fvalueofCuO-sinteredNdAlO3ceramicsdecreasedwithfurtherincreaseintheCuOconcentrationandchangedfrom63000GHz(0.25wt%)to18000GHz(1wt%).TheeffectsofCuOadditiononthemicrowavedielectriccharacteristicofNdAlO3mightdependonthechemicalpropertiesofCuO,therelatedchemicalreactions,phasechangesduringthecalciningprocedure,sinteringprocedureandthefinaldensity.Ingeneralcases,theQ×fvalueswereindependentofthedensityortheporosityforRDs>90%.ItcanbeconcludedthattheQ×fvalueofNdAlO3ceramicswereindependentofthedensificationsincethedensitiesofthesamplesinvestigatedinthisstudyishigherthan95%RD.GrainsizesaresuggestedtoaffecttheQ×fvalueofNdAlO3ceramicsduetolargergrainsresulting29 infewergrainboundaries,whichmeanslesslatticemismatchandlowerdielectricloss.However,theQ×fvaluesofNdAlO3decreaseasthegrainsizesincreasewithincreasingCuOconcentration.Afterall,thesecondphasesproducedduringthepreparationproceduresgovernthelosscharacteristic.Sincethecalciningtemperaturewassetat1250℃,notonlywasthemajorNdAlO3phaseobtainedbutalsothegenerationofsecondphasesNdAl11O18andNd4Al2O9couldbeavoided.TheQ×fvaluesofNdAl11O18andNd4Al2O9sinteredat1410℃arelessthan13000and10000,respectively,andseriouslyaffectthecharacteristicofqualityfactor.FromtheobservationsbyXRDanalysisandEDSanalysis,thesecondphaseappearedattheCuOconcentrationlevelover0.75wt%andmarkedlyaffectedtheQ×fvalueofNdAlO3ceramics.ThequalitycharacteristicofCuO-sinteredNdAlO3ceramicssinteredatlowertemperatureshasalargeQ×fvalueof63000GHz,whichisanimprovementonthepropertiesobtainedinpreviousstudies.Thiswasduetothesuitableselectionofcalciningtemperatureandwell-controlledextrinsicloss.Fig.3-20showsthecompositiondependenceofôfintheNdAlO3ceramicssinteredat1410℃.Thetemperaturecoefficientofresonantfrequencywaswellknowntoberelatedtothecomposition.TheôfofNdAlO3ceramicsexhibitedalargernegativevaluewithincreasingofCuOconcentration.Thetemperaturecoefficientrangesfrom-30ppm/℃to-45ppm/℃.Forpracticalapplications,amodificationofthetemperaturestabilitymustbeachievedinNdAlO3ceramics.30 3-4ConclusionsThesinteringtemperaturesofSmAlO3andNdAlO3ceramicswithsinteringaidswereeffectivelyreducedfrom1650℃to1430℃.SmAlO3ceramicswithproperCuOorZnOadditionscanbewellsinteredtoapproach96%TDunder1430℃duetoliquidphasesinteringeffect.TheQ×fvaluesofSmAlO3ceramicsof51000and41000GHzcouldbeobtainedat1430℃with0.25wt%CuOandZnOadditions,respectively.Q×fvalueofNdAlO3ceramicsof63000GHzwasachievedat1410~1430℃with0.25wt%CuO.Atlowadditionlevel(0.25-0.5wt%),theSmAlO3andNdAlO3ceramicsremainedsinglephaseandpresentedsecondphasesSm4Al2O9andNd4Al2O9withadditionsover0.5wt%asexaminedintheXRDpatternsandEDSquantityanalysis.TheexistenceofthesecondphasewouldseriouslydecreasetheQ×fvaluesofSmAlO3andNdAlO3ceramics.NosignificantchangewasobservedinthedielectricconstantsfordensifiedSmAlO3andNdAlO3ceramics.Thetemperaturecoefficientoftheresonantfrequencyôfdependedontheadditionsandrangedfrom–40to-65ppm/℃and–30ppm/℃to–45ppm/℃forSmAlO3andNdAlO3ceramics,respectively.31 Chapter4MicrostructureandMicrowaveDielectricPropertiesofBa2-xSm4+2/3xTiyO8+2yCeramics4-1IntroductionDuetotherapiddevelopmentinmobilecommunication,mobiletelephonesystems,aswellasinsatellitebroadcastingsystems,howtodesignthehigh-qualitydevicesisthemostimportanthomework.Inordertoachievethepurposeofminiaturizationofthedimensionsofthedevicesandservethesystemworkwithhighefficiencyandstability,thematerialsformicrowaveresonatorsarerequiredtobeexcellentinthreedielectriccharacteristics.Thefirstcharacteristicishighdielectricconstant(år),becausethemicrowavewavelengthisinverselyproportionaltoeofthedielectricmaterial(ë=ëo/e),whereëoisthewavelengthinair.ThesecondonerrishighQvalue,whichistheinverseofthedielectriclosstanä,isrequiredtoachievehighfrequencyselectivityandstabilityinmicrowavetransmitterandreceivercomponents.Thethird,temperaturecoefficientoftheresonantfrequency(ôf),isrequiredtobeascloseto0ppm/℃aspossible.BaO-R2O3-kTiO2ceramicswerereportedasaternarysystemandwereextensivelyusedasthebestsystemofmicrowaveceramics,whereR=Sm,Nd,Pr,Laarerareearthelementswithk=3~5[30-36,40-45].Ask=4,theconventionalformulaBa6-3xR8+2xTi18O54waspopularlyusedfortheBaO-R2O3-4TiO2ceramicstoinvestigatetherelationshipsbetween32 microstructuresandmicrowavedielectricpropertiesforeachrare-earthelementwithvariousxvalues.Dielectricproperties,structureformula,microstructuresandreactionsequencesoftheBaO-R2O3-4TiO2solidsolutionwerewidelystudied[41-43].Ask=5,Ba1-3xR2+2xTi5O14wasusedforinvestigatingtheBaO-R2O3-5TiO2ceramics[46,47].TherewasacommonresultthatthecrystalstructureoftheBaO-R2O3-kTiO2ceramicsisauniformmatrixphasebelongingtotungsten-bronze-typestructurewithslightlysecondphases.However,themainphaseoftheBaO-R2O3-kTiO2ceramicswasreportedasBaO-R2O3-4TiO2orBaO-R2O3-5TiO2indifferentstudies.Thepossibleexistencesofsolidsolutionsonthetie-lineofBaO-Sm2O3-3TiO2andBaO-Sm2O3-5TiO2werealsosuggested[45,46].S.Nishigakietal.hadalsostudiedthemicrowavedielectricpropertiesofBaO-Sm2O3-kTiO2inTi-richregion,0.15BaO-0.15Sm2O3-0.7TiO2and0.17BaO-0.13Sm2O3-0.7TiO2.Thesetwoceramicsystemswereequivalenttok=4.7and4.8,respectively[46].However,fewworkhasbeendoneininvestigatingthesolidsolubilityoftheBaO-Sm2O3-kTiO2withk≠4.Inthisstudy,thecompositionofBaO-Sm2O3-kTiO2ceramicswithk=4.5wasselectedandexpressedintheformulaBa2-xSm4+2x/3Ti9O26.TheconventionalformulaBa6-3xR8+2xTi18O54forBaO-Sm2O3-4TiO2isbasedonthesuggestionthatthemicrostructureofsystemisjustthe2+3+perovskitestructurewithsomedivalentBasubstitutionfrotrivalentSm.TheaspecttouseBa2-xSm4+2x/3Ti9O26forBaO-Sm2O3-4.5TiO2isbasedontworeasons.OneistoinvestigatethesolidsolubilityofBaO-Sm2O3-4.5TiO2ceramicsandsuggeststhemicrostructureofit33 containstungsten-bronze-typestructure[36-40].Anotheristousethestructureformulaoftungsten-bronze-typestructuretofindoptimumextentofSmwhichdeterminesexcellentdieletricproperties.AnothertargetinthisstudyistoinvestigatethemicrowavedielectricpropertiesofBSTceramicswiththecompositionrangeofx=0.1andy=0~2astheschematicdiagramshowninFig.4-1.SincetheextentandeffectofsamariumoftheBSTceramicshadbeenstudied,theBSTceramicswithxvalueatthevicinityof0.1exhibitedthebestpropertiesandwasselectedasthetypicalcharacteristicstoinvestigatetherelationshipsbetweenmicrowavedielectricpropertiesandyvaluesinthiswork.Therelationshipsbetweenthemicrowavedielectricpropertiesandthecrystalstructureswerealsodiscussedtoestablishsomeguidelinesforobtainingbetterbariumsamariumtitaniumoxidesystems.4-2StructuralFormulaofTungsten-Bronze-Structure-2Thetungsten-bronze-structureismadeupofcornerssharingTiO6octahedral,whichextendintheshortaxisdirectionandformanetworkofrhombicandpentagonalchannels[]35,37-39].Suchastructureistypifiedbyoxygenoctahedrallinkedtogetherattheircornersinacomplexwaytoyieldthreetypeofopeningswithdifferentshapesandsizes.ThespacesbetweentheMO6octahedraformthreedifferentkindsoftunnels,whicharetetragonalopenings(A1sites),pentagonalopenings(A2sites),andtriangleopenings(A3sites),respectively.(M=W,Ta,Nb,Tietc.).Lower-valencycations(Ba,Sm)arelocatedinsitesinthesetunnelsaboveandbelowthe34 planeshowninFig.4-2.TherearesevenAsitesandtenoctahedralinasimplestunitcell.Thisfollowsthatthegeneralformulaforatungstenbronzecouldbepresentedas[(A1)2(A2)4A3][(B1)2(B2)8]O30++2whereA3arenormallyvacantunlesssmallcations(r6=50-70pm)suchasLiorMgarepresent.Sothestructuralformulacouldbeexpressedinasimplerform(A2)2(A1)4B10O30.Basedonthissuggestion,Ba2-xSm4+2/3xTi9O26wasselectedforBaO-Sm2O3-4.5TiO2ceramics.ThemainpurposeofthisstudyistoshowthatBa2-xSm4+2/3xTi9O26ceramicspossesscompletesolidsolubilitywithgreatmicrowavedielectriccharacteristicsandestablishingsomeguidelinesforthedesignofBaO-R2O3-kTiO2dielectricmaterialsbaseonthestructuralformulaoftungstenbronzestructure.4-3ExperimentalProcedure4-3-1SamplepreparationsSamplesofBa2-xSm4+2/3xTiyO8+2ywerepreparedbyconventionalsolid-statemethodsfromindividualreagent-gradeoxidepowders:BaCO3,Sm2O3andTiO2.FirsttheserawpowderswereweighedaccordingtothecompositionratioofBa2-xSm4+2/3xTi9O26withvariousxvalues(0.0~0.3).Thestartingmaterialsweremilledinaplasticjarwithzirconiumballsunderpurewaterfor6hours.Themixturesweredriedandforcedthrougha325-meshsieveandthencalcinedat1050℃35 and1100℃for4hours,dried,ball-milledandgranulatedbysievingthrough175mesh.Thecalcinedpowderswereremilledfor12hourswithsuitableamountof5%solutionofpolyvinylalcohol(PVA)asthebinderandcompactedintodisks11mmindiameterby5mminheight.Afterdebinding,thedisksweresinteredattheatemperaturefrom1310℃to1400℃inairatmospherefor4hourswiththeheatingrate5℃/min.SamplesofBa2-xSm4+2x/3Ti8+yO24+2ywithx=0.1andvariousyvaluesweresynthesizedbythesameconventionalsolid-statemethods.4-3-2CharacteristicAnalysisThecrystallinephasesofthesinteredceramicswereidentifiedbyX-raydiffractionpatternanalysis.Microstructureobservationofthesinteredsurfaceswasperformedbyscanningelectronmicroscopy(SEM).EDSwasalsoperformedtoidentifytheexistencesofsecondphases.ThebulkdensitiesofsinteredsamplesweremeasuredbytheArchimedesmethod.Microwave,dielectricpropertiesweremeasuredbyusingtheHakkiandColemansdielectricresonantmethodunderTE011andTE01ämodeswithaHP8757DnetworkanalyzerandaHP8350Bsweeposcillator.Thedielectricconstantårwasapproximatedusingthevaluesofresonantfrequencyandthesizeofthefireddisk.TheunloadQvalueoftheceramicsatmicrowavefrequencywasmeasuredbyplacingthediskspecimenbetweentwobrassplatesundertheTE01ämode.Temperaturecoefficientofresonantfrequency(tf)wasalsomeasuredbythesamemethodwithchangingtemperaturemainlyfrom20℃~80℃andcalculatedfromtheequation:36 f80-f206tf=´10(ppm/℃)f´6020WherefistheresonantfrequencyofthedielectricresonatorattemperatureT℃.T4-4ResultsandDiscussionThereactionsequencesfortheBa2-xSm4+2/3xTiyO8+2yceramicscouldbeexpressedasfollowing:BaCO3+4TiO2→BaTi4O9+CO2(4-1)Sm2O3+2TiO2→Sm2Ti2O7(4-2)8BaTi4O9+3Sm2O3→2Ba4Ti13O30+3Sm2Ti2O7(4-3)Sm2Ti2O7+BaTi4O9→BaSm2Ti4O12+2TiO2(4-4)4Sm2Ti2O7+Ba4Ti13O30→4BaSm2Ti5O14+TiO2(4-5)2BaTi4O9+TiO2→Ba2Ti9O20(4-6)Equation(4-4)and(4-5)suggestthattheformationofmajorphasesBaO-Sm2O3-4TiO2orBaO-Sm2O3-5TiO2wereattheconsumptionoftheintermediatephases,Sm2Ti2O7,BaTi4O9andBa4Ti13O30.Thissuggestionisconsistentwithseveralpreviousreportsonthesimilarseriescompounds[46].ItshouldbenotedthattheremightbecertainamountofTiO2andBa2Ti9O20leftduringthereactionsequencesafterformationofthemainphaseBaSm2Ti4O12andBaSm2Ti5O14.TheintermediatephaseTiO2(rutile)notonlyaffectsthemicrowavedielectricpropertiesduetoitshighdielectricconstant(år=104)andhightemperaturecoefficient(+427ppm/℃),butalso37 influencethesinteringtemperatureforoptimumdensification.4-4-1MicrostructureofBa2-xSm4+2/3xTiyO8+2yceramicsThecrystallinephasesoftheBa2-xSm4+2x/3Ti9O26systemsinteredatdifferenttemperatureswereidentifiedwithX-raydiffraction.Fig.4-3showstheX-raydiffractionpatternsofBa2-xSm4+2x/3Ti9O26systemsinteredat1360℃withvariousxvalues.ThecrystalstructuresofBa2-xSm4+2x/3Ti9O26wereknownasthetungstenbronzetypewithorthorhombicstructure.WhenSmwasusedassubstitutefortheBasites,thesinteredBa2-xSm4+2x/3Ti9O26ceramicsexhibitnophasedifferencesfordifferentxvalues.ItwasfoundthatthecrystallinephasesareamatrixofmainphaseBaSm2Ti4O12orthorhombicstructureaccompanieswithsecondphases.ThesecondphasesTiO2andBa2Ti9O20mightexistinthesinteredceramicsbutarenoteasilydifferentiatedformthemajorphaseintheX-raydiffractionpatternsbecauseofoverlappingwithprimarycrystallinephase.However,theexistencesofsecondphasesTiO2andBa2Ti9O20oranotherintermediatephasecouldbeidentifiedbyquantityanalysis,energydispersiveX-rayspectrometer(EDS)results.WhenSmisusedassubstituteforBasitesofBa2-xSm4+2x/3Ti9O26ceramics,thesinteredceramicsexhibitsmallerlatticeparametersduetothedifferencesbetweenSmandBainionradius,whichdropsahintthat2èwilltakelargervalues.The2èpeaksoftheXRDdiffractionpatternsshifttothelargervaluesasxvalueincrease,asshowninFig.4-3.Thisisinagreement38 withthehintandsuggeststhattheBa2-xSm4+2x/3Ti9O26systemwillhavesmallerdielectricconstantwithlargerxvalue.TheresultsalsosuggestthattheBa2-xSm4+2x/3Ti9O26ceramicsformasolidsolutionwithxvaluerangesfrom0.0to0.3.Toinvestigatethemorphologiesofthesamples,thesurfacesofsinteredspecimenswereexamined.Fig.4-4illustratesthesinteredsurfacesofBa2-xSm4+2x/3Ti9O26ceramicswithx=0.1atdifferentsinteringtemperaturesfor4hoursforthepowdercalcinedat1050℃.Itshowsthatthemaincrystalswereaciculargrainswithslightamountofblock-shapedcrystals.Thelengthoftheaciculargrainstendedtoincreasewithsinteringtemperaturesespeciallyabove1370℃.Atthesinteringtemperaturesarebelow1370℃,thegrowthofgrainsresultsinthedecreaseoftheporosityinthemicrostructureandtheapparentdensityincreaseswithincreasingsinteringtemperatures.Atthesinteringtemperaturesabove1370℃,thelongaciculargrainsgrowattheexpenseofshortones,whichresultedintheformationofnewvoidswheretheshortergrainswereoriginallylocated.Thegrowthdirectionofthebarwasinthelongitudinaldirectionofthecrystal.Asthelongaciculargrainscomeintocontact,continualgrowthmaysqueezethemawayfromoneanother,whichmayresultintheformationofnewandlargervacantpositions.Thiscausedexpansionofthespacebetweenbar-shapedgrainsandresultsintheincreaseofporosityandthedecreaseinbulkdensities[46].Thesizeanddistributionofaciculargrainsweremainlydeterminedbysinteringtemperature.Fromthephotomicrographsofthesinteredsurfaces,itwasfoundthatthecrystalsarealmostsimilarandconsistofseveraldifferenttypesofsecondphases.Fig.4-5aillustratesthephotograph39 ofthesinteredsurfacewithsecondphaseBa2Ti9O20,whichwasidentifiedwiththeenergydispersiveX-rayspectrometer(EDS),asshowninFig.4-5b.Fig.4-5cillustratesthemicrograph,whichistheblock-shapedgrainonthesinteredsurfaceandhasbeenidentifiedastheintermediatephaseSm2Ti2O7byEDSresultshowninFig.4d.Table1illustratesthebulkdensityandthemicrowavedielectricpropertiesofBa2-xSm4+2x/3Ti9O26systemwithdifferentsinteringtemperaturesandvariousxvalues.Differentialthermalanalysis(DTA,SETARAM,TAG24,France)wasperformedtodeterminethesinteringconditionsofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithx=0.1andyvariousvalues.TwoendothermicpeaksappearedontheDTAcurvesforthestartingmaterialsshowninFig.4-6.Thefrontpeakislocatedataround1350℃thatistheeutectictemperatureandtheotheroneislocatedataround1500℃,whichistheliquidustemperatureofthecompound.Thefrontpeakswillgiveimportantinformationforchoosingthesuitablesinteringtemperatures,becausesinteringwilloccurataroundthetemperaturethattheliquidphaseappearsandtheliquidphasepromotesthesintering.Betweentwotemperaturestheobjectcompoundcouldbewellsintered.Itiseasilyfoundthatthetemperaturerangebetweentwoendothermicpeaksdecreasesandthesecondendothermicpeakmovesforwardlowertemperatureastheyvalueincrease.ThissuggeststhattheBSTceramicscouldbedensifiedinasmallertemperaturerange.ItalsoshowedthattheBSTceramicshavealowersinteringtemperatureastheincreaseofTiamount.Inanotherwords,theBSTceramicswithvariousy40 valueswillhaveitscertaindensifiedtemperature.Thiswaswellprovedandingoodagreementwiththetemperaturedependenceofbuckdensity.TheX-raypowderdiffractionoftheBST(x=0.1,y=1)powderscalcinedatdifferenttemperatureswasshowninFig.4-7.BaTi4O9andSm2Ti2O7revealontheX-raypatternsoftheBSTceramicscalcinedat950℃,1000℃,1050℃and1100℃.TheresultssuggestthattheintermediatephasesofBaTi4O9andSm2Ti2O7producedbeforetheBaSm2Ti4O12orBaSm2Ti5O14(BST)phasesformed[46-47].ThemainphaseBaSm2Ti4O12orBaSm2Ti5O14formsandcoexistswiththeintermediatephases,BaTi4O9andSm2Ti2O7asthecalciningtemperatureisover1050℃.AstheBSTceramicscalcinedat1300℃,slightminorphasesmightexistinthecalcinedpowder,however,itisdifficulttodistinguishfromthemainphasebecauseofoverlappingwiththemaincrystallines.Fig.4-8showstheX-raydiffractionpatternsofthesinteredBa2-xSm4+2x/3Ti8+yO24+2yceramicswithx=0.1andvariousyvalues.AsshowninFig.4-8,BaSm2Ti4O12andBaSm2Ti5O14presentasthemaincrystallinephaseandmightbeinassociationwithSm2Ti2O7,Ba2Ti9O20andTiO2astheminorphases[36,46-47].Whenyincreasesfrom0to2,thecrystallinephasesofallcompositionsrevealthesimilarresults.ConsideringtheresultsshowninFig.4-8,asTiincrease,theBSTceramicsexhibitalmostnophasedifferencesfordifferentyvalues.XRDoftheBSTceramicsshowalmostthemainphasesofBaSm2Ti4O12orBaSm2Ti5O14thatwereidentifiedasthetungsten-bronze-typeorthorhombicphase[35-38,46].Themaincrystallinephasesmightconsistofslightsecond41 phases.ThesecondphasesarenoteasilydifferentiatedformthemajorphaseintheX-raydiffractionpatternsbecauseofoverlappingwiththemainlycrystallinephase.However,theexistenceofsecondphasesTiO2andBa2Ti9O20,Sm2Ti2O7couldbeidentifiedbysomequantitativeanalysis,andwereprovedbyenergydispersiveX-rayspectrometer(EDS).ThesecondphasewasdetectedbyEDSspectraatcertainspecificgrains,andtherelativeratioofBa,SmandTisuggestedtheexistenceofsecondphases,Sm2Ti2O7,Ba2Ti9O20andTiO2.WhenSmwasusedassubstituteforBasitesoftheBSTceramics,thesinteredceramicsexhibitsmallerlatticeparametersduetothedifferencesbetweenSmandBainionradius,whichdropsahintthat2èwilltakethelargervalues.The2èpeaksoftheX-raydiffractionpatternsshifttolargervaluesastheyvalueincreases.TheresultsalsosuggestthattheBa2-xSm4+2x/3Ti8+yO24+2yceramicformacompletesolidsolution(x=0.1,y=0~2).Toinvestigatethemorphologiesofthesamples,thesurfacesofthesinteredspecimenswereexamined.Fig.4-9illustratesthesinteredsurfacesofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithx=0.1forvariousyvalues.Itshowsthatthemaincrystalswerebar-shapedgrainswithslightamountofblock-shapedcrystals.Thelengthofthebar-shapedcrystaltendedtoincreasewithsinteringtemperaturesespeciallyabovedensifiedtemperatures.Asthesinteringtemperaturesarebelowdensifiedtemperatures,thegrowthofgrainsresultinthedecreaseoftheporosityinthemicrostructureandtheapparentdensityincreaseswithincreasingofsinteringtemperatures.42 4-4-2DensificationofBa2-xSm4+2/3xTiyO8+2yceramicsTheapparentdensitiesofBa2-xSm4+2x/3Ti9O26ceramicswithvariousxvaluesasafunctionoftheirsinteringtemperaturesareindicatedinFig.4-10.Itwasfoundthatthebulkdensityhasthemaximumvalueattemperaturesaround1370℃.Eitherhigherorlowersinteringtemperaturesmaycausethebulkdensitytodecrease,especiallyifthesinteringtemperatureisbelow1320℃orabove1370℃.Thedensifiedtemperaturesdefinedherearethetemperatures,whichcouldachievethehighestrelativedensityforeachcomposition.TheapparentdensitiesoftheBa2-xSm4+2x/3Ti8+yO24+2yceramics(x=0.1)asafunctionofthesinteringtemperaturesareillustratedinFig.4-11.Itshowsthattheapparentdensitiesaredependentonsinteringtemperaturesastheyvalueswerefixed.Eachcompositionhasitsownspecificdensificationtemperaturerange.ThesaturatedbulkdensitiesoftheBSTceramicsslightlydecreasewiththeincreaseinyvalueandthedensificationtemperaturesdecreasefrom1390℃to1330℃asyvalueincreasesfrom0to2,respectively.4-4-3MicrowavedielectricpropertiesofBa2-xSm4+2/3xTiyO8+2yceramicsFig.4-12showstheQ×fvaluesofBa2-xSm4+2x/3Ti9O26(x=0.1~0.3)ceramicsasa43 functionofthesinteringtemperaturesforvariousvalues.ThemeasuredQfactorswereobtainedatdifferentresonantfrequenciesdependingonthephysicaldimensionsandrelativedielectricconstants.Accordingtothegenerallyobservedrelationship,f×Q=constant,wherefistheresonantfrequencyandQisthevaluecalculatedfromthewaveguidemethodonTE01ó.Manyfactorswerebelievedtoaffectthemicrowavedielectriclossandcouldbedividedintotwofields,theintrinsiclossandextrinsicloss.Theintrinsiclossesweremainlycausedbylatticevariationmodeswhiletheextrinsiclossesweredominatedbysecondphases,oxygenvacancies,grainsizesanddensificationorporosity.Densificationandphaseassemblagearethemainfactorsthatdeterminethedielectriclossandhadbeenseeninseveralmicrowavedielectricmaterialsystem.Forallcompositions,theQ×fvaluesincreasewithincreasingofsinteringtemperatures.AfterreachingthemaximumQ×fvalueataround1370℃,theQ×fvaluedecreases.ItwasfoundthattheQ×fvaluesrevealthesimilartrendasobservedintheapparentdensities.ItsuggeststhatthedenserceramicshavethehigherQ×fvalue.ThemicrowavedielectriccharacteristicsandthemicrostructuresofBa2-xSm4+2x/3Ti9O26ceramicsweredeterminedbythechemicalcompositionsandsinteringconditions.Fig.4-13showstheQ×fvaluesoftheBSTceramicsasafunctionofthesinteringtemperatureswithx=0.1.TheQ×fvaluesoftheBSTceramicsvaryfrom9500GHzto13000GHzwasobtained.Fig.4-14showstheplotsofthedielectricconstantasafunctionofsinteringtemperaturesforvariousxvaluesofBa2-xSm4+2x/3Ti9O26ceramics.Therelativedielectric44 constantsårdecreaseastheamountofsubstitutionofSmforBaincrease.Thisisingreat3+2+agreementwiththeX-raypatternsdiscussedabove.AstheSmionssubstitutefortheBaions,notonlythevacancieswerecreatedtomaintainchargeneutralitybutalsothelattice3+2+parameterswerechangedduetothedifferenceinionicradiusbetweenSmandBa.Thedifferenceofionradiusdirectlyaffectsthelengthofc-axis,whichistheimportantcharacteristicofthetungstenbronzetypestructure.Thedecreaseofthelatticeparametersalsopromotestheshrinkageoftheoctahedraanddecreasesthedielectricconstantindirectly.Therelativedielectricconstantsweregenerallyproportionaltosinteredbulkdensities.Thespecimenshavemaximumdielectricconstantat1360℃~1370℃whichagreeswellwiththatgivingthehighestdensities.Fig.4-15illustratedtherelativedielectricconstantasafunctionofsinteringtemperatureforvariousyvaluesoftheBSTceramics.ItisworthnotingthattheårvaluesoftheBa2-xSm4+2x/3Ti8+yO24+2yceramicdecreaseslightlywiththeincreasingofyvalue.SincethedielectricpropertiesdependonthelatticeparametersandtheincreaseofTiamountmightcausetheshrinkageoftheperovskiteoctahedral,thisresultstheBSTceramicswithsmallerdielectricconstantastheyvaluesincrease.Thewell-sinteredBSTceramicssaturateat62-85asy=0~2.Therelationshipsbetweendielectricconstantandsinteringtemperaturesrevealthesameasthatbetweendensitiesandsinteringtemperatures.Theårvalueincreaseswiththeincreaseofsinteringtemperaturesowingtotheincreaseindensities.45 Fig.4-16showsthecompositiondependenceofôfintheBa2-xSm4+2x/3Ti9O26systemsinteredat1360℃.Theintrinsicfactorofmicrostructurevariationandextrinsicofphaseassemblagewerebelievedtodeterminetheôfcharacteristic.Itwasobservedthattheôfvalueincreaseswithincreasingofxvalue.Thiscouldbeexplainedfromthestructuralformulaoftungstenbronzetypestructureandthereactionsequencesinequation4andequation5.ThemainphasesweremoreeasilyformedwithlargerxvaluesandmoreamountofsecondphaseTiO2appeared,whichhaslargepositiveôf(+427ppm/℃)andindirectlyaffecttheôfcharacteristic.Theôfvaluevariesfrom–3.4to+6ppm/℃asxvalueincreasesfrom0to0.3at1360℃.Itwasobservedthattheplotlinecrossedôf=0,whichimpliesthatôf=0couldbeobtainedbyadjustingxvalue.Theabsolutevalueofôfvalueincreaseswiththevariationinthethermalexpansioncoefficient,becausethedecreaseofthelatticeparameterspromotesshrinkageoftheoctahedron.Fig.4-17showsthecompositiondependenceofôfintheBa2-xSm4+2x/3Ti8+yO24+2ysystemsinteredattheirdensifiedtemperatures.Theôfvaluevariesfrom–12ppm/℃forBa2-xSm4+2x/3Ti8O24(x=0.1,y=0)to17ppm/℃forB2-xSm4+2x/3Ti10O28(x=0.1,y=2).TheextrapointswereexaminedtofurtherconformthemanneroftheôfvaluetovariousamountsoftheTiadditive.Thelineswithvariousyvaluescrossedôf=0atspecificxvalue.ThiscouldbeexplainedthattheexistenceofsecondphaseTiO2affectsthetemperaturecharacteristicoftheBSTceramics[35,45-46].Therelationshipsandtrendsbetweenôfandx,yvaluesaresimilar46 withtheresultswhenSrwasusedasthesubstitutionforBaindifferentBSTceramicsasreported[46-47].Thisimpliesthatôf=0canbeobtainedbyadjustingtheamountsofSmsubstitutionforBaandtheTiadditions.4-5ConclusionsTheoptimizedconstituentratioofBaO-Sm2O3-4.5TiO2ceramicswasselectedbaseonthesitesoccupanciesinperovskiteblocksandthepentagonalcolumnsfromstructuralformulaoftungstenbronzetypephases.BothcharacteristicsofthetungstenstructureandsiteoccupiesofcationswereconcernedtosynthesizetheBSTceramics.ThecrystallinephasesofsinteredceramicswereidentifiedasthetungstenbronzestructuresbyX-raydiffractionpattern.ThedetailsandtheextentoftheBa2-xSm4+2x/3Ti9O26solidsolutionsystemaredependonxandyvalues.Thetypicaldielectricperformancesofår=68to79andQ×f=11000to12500GHzwereobtained.TheôfvaluesofBa2-xSm4+2x/3Ti9O26ceramicswasadjustedfromnegative(-3ppm/℃forx=0)topositive(+6ppm/℃forx=0.3).SecondphasesBa2Ti9O2andTiO2appearedduringsinteringproceduresandwereidentified.TheBa2-xSm4+2x/3Ti8+yO24+2yceramicswithx=0.1~0.3andy=0~2formedthecompletesolidsolutionandwereobtainedinthisreach.Thetypicaldielectricperformancesofår=63to85andQ×f=8500to13000GHzwereobtained.TheôfvaluesoftheBST47 ceramicscanbeadjustedfromanegative–12ppm/℃valuetoapositivevalue17ppm/℃asyincreasesfrom0to2.SecondphasesBa2Ti9O2andTiO2appearedduringsinteringproceduresandwereidentified.ForvariousTicontents,theBSTceramicscanbesinteredwellateachspecificsinteringtemperature.Notonlydielectricconstant,butalsoQ×fvaluesaredependentonthedensificationofBSTceramics.Comparedwithothermicrowavematerials,Ba2-xSm4+2x/3Ti8+yO24+2yceramicswithhighdielectricconstant,highQ×fvaluesandadjustableôfvaluesarethegreatestdielectricmaterialsfortheapplicationinmicrowavecommunicationsystems.TheresultsofthisworksuggestthatBaO-Sm2O3-kTiO2(k=4~5)ceramicscontainstheperovskite-like,thetungsten-bronze-typestructureandBa2-xSm4+2x/3Ti9O26ceramicsformacompletesolidsolution.ThiscontributesanimportantaspecttoinvestigatethemicrostructureofBaO-Sm2O3-TiO2ceramicsinTirichregion.TherelationshipsbetweenmicrostructureanddielectricpropertiesofBaO-Sm2O3-kTiO2(k≠4)couldbeconstructedwiththesimilaraspectfromthestructureformulaoftungsten-bronze-typestructure.48 Chapter5DesignandFabricationofMicrowaveBandpassFilter5-1IntroductionToobtainthecompactanalogpartoftheradiocommunicationsystemisthesignificantfactortoreducethedimensionofthemobilecommunicationequipments.Microwavefiltersoccupyalargevolumeintheanalogpart,sofabricationacompactfilteristhemostimportantmethodtoreducethesizeofthecommunicationsystem.Conventionalwaveguidecomponentshavelowinsertionlossandexcellentresponsesatresonantfrequency,buttheyaretoolargeforUHFapplications[55-56].SurfaceAcousticWaveFilters(SAWF)wereusedtoreducethedimensionefficiently,althoughtheirinsertionlossandpowerhandlinglimittheirpracticalapplication.HighQdielectricceramicresonatorswithhighdielectricconstantcanefficientlyreducethesizeoffiltersfurthermorethesmalltemperaturecoefficientcontributesthesystemhighstability.Withthegreatcharacteristics,dielectricresonatorswerewidelyusedinthefabricationsofmicrowavefilters[48-50,58-63].Manyassemblymethodsofcoaxialdielectricresonatorsincludingwereinvestigatedandappliedtosolvetherestrictionsoffabricationcostandsizereducing[50,61,62].Stepimpedanceresonators(SIR)filterandmonoblockdielectricfiltershavetheadvantageofsmallsizeandwerealsostudiedanddesignedintensively[49-51,59].Manyanalysistheorems,simulation49 packagesandcomputeradddesignmethodsareappliedtoestablishafabricationprocedureofmicrowavefilters.Althoughthestructuresimulationsandtheanalysisofcouplingwereperformedinthedesignprocedures,unfortunatelytherelationshipsbetweenthecouplingsaturationandthephysicalstructurewerenoteasilydefinedandrestrictedtheirdevelopments.Microwavedielectricmaterialsarerequiredtobeexcellentinthreedielectriccharacteristics.Ahighdielectricconstant(år),ahighqualityfactor(Q),andaverystabletemperaturecoefficient(t=~0ppm/℃)attheresonantfrequency.TheBaO-R2O3-TiO2(R=Sm,Nd)fceramicsystemhasthegreatmicrowavedielectriccharacteristicsandwaswidelyusedinthefabricationofsubstratesandresonatorsthatwereappliedintheconstructionsofmicrowavefilters.Thebandpassfiltersdescribedinthispaperoperatingatmobilecommunicationlfrequencywereconstructedwithcoaxialdielectricresonators.Theresonatorsweremade4ofhighQdielectricceramicswithhighdielectricconstant(e=75∼80,Q´f=11000rGHz).Thecouplingbetweenadjacentresonatorswasobtainedviatheaperturesformedontheoutersidesurfacesoftheresonatorswithair-gapcouplinganddirectcouplingindividually,furthermorethecomb-linetheorywasappliedtogetthetargetresponsewithoutmodifyingthestructureofthefiltersafterassembly.5-2FabricationofcoaxialdielectricresonatorsThecoaxialdielectricresonatorsdiscussedinthispaperweremadeofBSTsystem.The50 startingmaterialoftheBSTsystemconsistsofBaCO3,Sm2O3,andTiO2.Therawmaterialsowerepreparedandmixedinaplasticjarfor12hoursandwerecalcinedat1050C.Thenthe2materialwaspressuredintocoaxialspecimensunderthepressureof1500kg/cm.Atlasttheosamplesweresinteredat1350Cunderaircondition.Fig.5-1showstheconfigurationofasinteredresonator.Theresonatorisrectangularshapedblockwithametallizedcylindricalholethatactsasinnerconductorsattheircenter.Thesurfacesofthecoaxialresonators,exceptthetopendsurfaceandthesurfacesbetweentwoadjacentresonators,werefullymetallized.Theapertureswereformedontheadjacentsurfacesofeachresonatorasacouplinginstrument.Thetopendwasarrangedtobeanopen-circuitsurface,whiletheoppositeendsurfacewasashort-endsurface.TheresonantfrequencyoftheresonatorsdependsonthelengthLoftheresonators.Thecenterfrequencyfoofthefiltercouldbeexpressedas:ccf==(5-1)ol×e4Legrrwherecisthepropagatingvelocityoftheelectromagneticwave,ëgisthewavelength,Listhelengthofresonator,åristheeffectivedielectricconstant.Thelengthoftheresonatorisaboutl/4atresonantfrequency,wherelisawavelengthofelectromagneticplanewaveintheggdielectricmedium.Thediameterofthecenterhole,Dandthewidthoftherectangular,waretheboundaryconditions,whichdeterminetheunloadedQofeachresonatorandcoupling51 coefficientsbetweentwoadjacentresonators.Therelationshipsbetweenthephysicalstructureandtheelementvalueofeachresonatorcouldbeinvestigatedandestablishedbythenumericalanalysis.Comb-linetheorywasappliedtoadjusttheelectricallengthinordertoachievethetargetcharacteristicsofthefrequencyresponse.5-3DesignandconstructionoffilterAconventionaldesignmethodformicrowavedielectriccoaxialresonatorfiltersissuggestedinthiswork.Thismethodisbasedonarigorousanalysisandrelatedtheoriesofmicrowavefilters.Thereareseveralbasicelectricalspecificationsofaconventionalmicrowavefilter,suchasthepassbandcenterfrequency,insertionlossatresonantfrequency,bandwidthofpassband,rippleofpassbandorstopband,andrejectionslopeneedtobeachieved.Basedonthetargetcharacteristicsofafilter,thelengthoftheresonator,thefrequencyresponsetype,thenumberofstages,andthenumberofadditionalpolecouldfirstbecalculated.Bymodelingtheequipmentcircuitofthefilters,thecouplingcoefficientsandthephysicaldimensionsofeachresonatorcouldbedefined.Theconfigurationofathree-stagecapacitivecouplingbandpassfilterwasshowninFig.5-2.Theresonatorswerearrangedsidebysidetoformathree-stagefilterbeforeassemblyandweretunedtoworkattheuniformdesiredresonantfrequencybycontrollingthelengthoftheresonator.Thelengthofthe52 resonatoristhemostimportantparametertocontroltheresonantfrequency.Duetothedifferenceofmetallizedareaoftheinputandoutputstageislargerthantheareaofthemediumstage.Thecomb-linetheorywasappliedandpartialareaoftheopen-circuitendsurfacewasmetalizedtochangetheequivalentelectricallengthoftheresonators.Theseparationdistancebetweentwoadjacentresonatorsdeterminesthecouplingamountinair-gapcouplingmethod.Thedistancealsoaffectstheresponseofbandwidthandrippleofthefilteratpassbandfrequency.Bycontrollingtheseparationdistanceandboundaryconditionsbetweentwoadjacentresonators,thedemandsoffilterspecificationcouldbeachieved.Inordertohavecompactfilters,directcouplingcanbeusedtoachievetherequirement.Asdirectcouplingmethodwaschosentocoupleelectromagneticenergy,arectangularapertureneedstobeformedontheadjacentsurfacesbetweentworesonators.Theresonatorswerearrangedsidebysidewiththesameendshortedwithoutseparationdistance.Thearrangementformedadirect-couplingbandpassfilter.Couplingofelectromagneticenergybetweenwasobtainedviaaperturesanddependsonthedimensionandpositionoftheapertures.Thestrongestelectricandmagneticfieldsarelocatedattheopen-circuitendandshort-circuitend,respectively.Thesize,shape,andlocatingpositionoftheaperturesdeterminethecouplingconditionbetweentwoadjacentresonatorsandindirectlyinfluencedthefrequencyresponseofthefilter.Therelationshipsbetweenthephysicalstructuredimensionsandthefrequencyresponsecouldbeestablishedwiththenumericalanalysisandthesimulationoftheequipment53 circuitofthefilter.5-4CouplinganalysesTheequivalentcircuitofthefirststageloadedbytheexternalcircuitisshowninFig.5-3.AparallelconnectionofCr,Lrrepresentstheunloadedresonatorwitharesonantfrequencyfo.Zirepresentstheimpedanceoftheexternalcircuit.ReandCearetheequivalentresistiveandcapacitiveelementsoftheexternalcircuitappearingacrosstheidenticalresonatorcircuit.C01isthecouplingcapacitancebetweentheexternalcircuitandtheresonator.Thetransformationofelectromagneticenergyiscoupledbythecapacitancebetweentheexternalterminalandtheinnerconductingcylinderhole.TheequivalentcircuitoftworesonatorswithcouplingcapacitorcouldbeassumedandisshowninFig.5-4a.LriandCriareequivalentinductiveandcapacitiveelementsofeachë/4resonator,respectively.C12representstheequipmentmutualcouplingcapacitor,whichcouplestheelectromagneticenergybetweenthefirsttwoadjacentresonators.TheequivalentcircuitcouldbetransferredintoFig.5-4bwithanadmittance’inverter,J12.C12istheequivalentcapacitor,whichaccountsforthemutualcouplingmechanism.Bycontrollingtheair-gapsandaperturesbetweentwoadjacentresonators,theboundaryconditionsofthetransmissionlines,C12couldbedeterminedanddirectlyinfluencedthecouplingamount.Thisalsoaffectsthefrequencyresponseofbandwidthand54 insertionlossatcenterfrequency.Theresonantfrequencyfocouldbedeterminedfromtheidenticalequivalentcircuitandtherelationswereexpressedasfollowingequations:1f=(5-2)o'2pLr(C+C+C12)er11f=(5-3)o,'2pLr(C12+Cr2+C23)1f=(5-4)o'2pLr(C23+Cr3+Co)1f=(5-5)r2pLCrrTheoriginalresonantfrequencyofeachresonator,fr,shirtsandisdifferentfromthecenterfrequencyofthefilter,fobecausethecouplingcapacitancebetweenexternalcircuitandtheresonatorsandthecapacitancebetweentwoadjacentresonatorsthemselveschangethe''equivalentelectricallengthofeachresonator.C12,C23aretheequivalentcapacitorswhichaccountfortheeffectofcouplingmechanismthatcontributesthefrequencyshift.Come-linetheorycouldbeusedheretoformsomesuitablecompensativecapacitanceontheopenendsoftheresonators.Thismadethedevicetune-freeafterassembly.Fig.5-5showstheequivalentcircuitofthethree-stagebandpassfilterwiththeexternalcircuit.TheareaboundedbybrokenblockrepresentsthecouplingmechanismoftwoadjacentresonatorswiththecouplinginvertersJ12andJ23.Insuchacoaxialresonatorstructureliketheconfiguration55 showninFig.5-2,electromagneticenergytransfersinTEMmodeandtwodifferentkindsoffileddistributions,evenmodeandoddmode,existintheTEMmodetransmissionline.ThecharacteristicimpedanceZoofthetransmissionlinecouldbeexpressedas2ZZoeooZ=(5-6)oZ-ZoeooZAndZarethecharacteristicimpedancesofevenandoddmodes,respectively.TheoeoocharacteristicimpedanceZandZofaTEMmodetransmissionlineisrelatedtoitsshuntoeoocapacitanceandisexpressedas1Z=(5-7)oevCe1Z=(5-8)oovCoCeandCoarethecapacitancesofevenandoddmodes,respectively.Thesecharacteristicimpedancesaredependentonthetotalstaticcapacitancesappearingacrossthecylinderholesandground.ThetotalstaticcapacitancesincludethemutualcapacitancebetweentheneighborholesoftheadjacentresonatorsC12andtheself-capacitanceCroftheresonatoritself.Fig.5-6ashowsthetotalcapacitancebetweentwoadjacentresonatorsandthegroundwhenthetransmissionlinesaredriveninoddmode.Incontrasttothis,Fig.5-6bshowsthetotal56 capacitancewhenthetransmissionlineisdriveninevenmode.Numericalfieldsanalysis,liketwo-dimensionalfiniteelementmethod(2DFEM)or3DFEMcouldbeappliedtosolvethefielddistributionsoftheresonatorsandcharacterizethestructureoftheresonators.Afterthefileddistributionsbetweentheadjacenttransmissionlinesareobtained,theelectricfield,capacitance,equivalentdielectricconstantandcouplingcoefficientscanbecalculatedindirectly.5-5FabricationandperformanceoftheexperimentfilterBa(2-x)Sm(4+2x/3)Ti9O26(BST)system(x=0.05)withår=75,Q´f=11000,andôf=~0ppm/℃wasusedforthefabricationofmicrowavedielectricfilter.ThespecificationsofabandpassfilterneedtobeachievedarelistedinTable5-1.ThecouplingcoefficientsandexternalQcouldbecalculatedbythefollowingequations:BW1k=´(9)i,i+1fg×goii+1foQ=´g×g(10)eii+1BWwhereBWandfoarethe3-dBbandwidthandthecenterfrequencyofthebandpassfilter,57 respectively,andgiaretheprototypeelementvalues(i=0,1,2,3,...).InsertionlossofabandpassfilteratcenterfrequencyisdependentontheunloadedQofeachresonator,thedesiredbandwidthofthefilter,andthenumberofresonatorstagesandcanbeexpressedas:nfgoiL=4.343å(11)BWi=1QuiListheinsertionlossatcenterfrequency(dB),giareprototypeelementvalues,QuiareunloadedQofi-thresonator.Theadjustmentoftheresonantfrequencywasperformedbyformingthecompensatecapacitancetochangetheelectricallengthofeachresonator.Thedistanceoftheair-gapbetweentwoadjacentresonatorsandtheaperturesofeachresonatorthatdeterminethecouplingcoefficientswereformedasdescribedbefore.Thefrequencyresponseoftheexperimentalbandpassfiltersbyair-gapcouplinganddirectcouplingweremeasuredandshowninFig.5-7aandFig.5-7b,respectively.Thecenterfrequencycouldbetunedinthevicinityof900MHzforpersonalcommunicationsystem.Thetargetcharacteristicsofbandwidthandinsertionlossunder30MHzand3dBwereachievedandingoodagreementwiththespecifications.58 Chapter6ConclusionsandFutureWork6-1Conclusion(1)TheeffectofCuO,ZnOandV2O5additionstoReAlO3(Re=SmandNd)wereinvestigated.ThesinteringtemperaturesofReAlO3ceramicscanbeeffectivelyreducedfrom1650℃to1410~1430℃andcanwellsinteredtoapproach97%duetotheliquid-phasesinteringeffect.ThedielectricconstantandqualityfactoroftheReAlO3ceramicsremainsgoodcharacteristicsatlowsinteringtemperature.Theeffectofadditionsonthedevelopmentofthemicrostructureandthemicrowavedielectricpropertiesdependsontheconcentrations.Atlowconcentrationlevels(0.25-0.5wt%),theReAlO3ceramicsremainedinthesinglephaseandpresentedsecondphaseSm4Al2O9andNd4Al2O9onSmAlO3andNdAlO3,respectivelywithconcentrationsover0.5wt%asdeterminedbyXRDandEDS.TheQ×fvaluesof51000and41000GHzcouldbeobtainedat1430℃for0.25wt%CuOandZnO-sinteredSmAlO3ceramics.TheQ×fvalueof63000GHzwasachievedat1410~1430℃for0.25wt%CuO-sinteredNdAlO3.TherelativedielectricconstantofReAlO3remainsintherangefrom19.6to22.5.ThetemperaturecoefficientofSmAlO3ceramicsdependsontheadditionsandrangesfrom–40to-65ppm/℃.ThetemperaturecoefficientofCuO-sinteredNdAlO3remainsintherangeof–30ppm/℃to–45ppm/℃.59 (2)TheconstituentratioofBaO-Sm2O3-TiO2ceramicswasselectedbaseonthesitesoccupanciesinperovskiteblocksandthepentagonalcolumnsfromstructuralformulaoftungstenbronzetypephases.BothcharacteristicsofthetungstenstructureandsiteoccupiesofcationswereconcernedtosynthesizetheBSTceramics.ThecrystallinephasesofsinteredceramicswereidentifiedasthetungstenbronzestructuresbyX-raydiffractionpattern.ThedetailsandtheextentoftheBa2-xSm4+2x/3Ti8+yO24+2ysolidsolutionsystemaredependonxandyvalues.Thetypicaldielectricperformancesofår=68to79andQ×f=11000to12500GHzwereobtainedinwell-sinteredBa2-xSm4+2x/3Ti9O26ceramics.TheôfvaluesofBa2-xSm4+2x/3Ti9O26ceramicswasadjustedfromnegative(-3ppm/℃forx=0)topositive(+6ppm/℃forx=0.3).TheBa2-xSm4+2x/3Ti8+yO24+2yceramicswithx=0.1~0.3andy=0~2formedthecompletesolidsolutionandwereobtainedinthisreach.Thetypicaldielectricperformancesofår=63to85andQ×f=8500to13000GHzwereobtained.TheôfvaluesoftheBSTceramicscanbeadjustedfromanegative–12ppm/℃valuetoapositivevalue17ppm/℃asyincreasesfrom0to2.SecondphasesBa2Ti9O2andTiO2appearedduringsinteringproceduresandwereidentified.Notonlydielectricconstant,butalsoQ×fvaluesaredependentonthedensificationofBSTceramics.Comparedwithothermicrowavematerials,Ba2-xSm4+2x/3Ti8+yO24+2yceramicswithhighdielectricconstant,highQ×fvaluesandadjustableôfvaluesarethegreatestdielectricmaterialsfortheapplicationinmicrowavecommunicationsystems.60 (3)Coaxial-typedirectandaircouplingmicrowaveceramicsbandpassfilterswerefabricatedousingBSTdielectricmaterial(e=80,Q×f=13000at4.3GHzandt~0ppm/C).rfThefilterswerecomposedofthreequarter-wavelengthcoaxial-typeresonators.Sincecouplingbetweenadjacentresonatorsisviaanopenedwindow,additionalcouplingelementsarenotneeded.Electriccouplingormagneticcouplingcanbechosenbymovingthelocationandvaryingthedimensionoftheaperture.Filterswithinsertionlosslessthan3dBwereobtainedeitherthroughelectriccouplingorthroughmagneticcoupling.ThisstructurecaneffectivelyreducethesizeandthecostoffiltersintheUHFfrequencyrange.Furthermore,itcanbeappliedtofabricatecrosscouplingfilterwithellipticalresponse.6-2FutureWorkForfuturetrend,somesubjectswiththepotentialsrelatedtothisthesisareindicatedasfollow:(1)Todevelopanewlowtemperaturesinteringmicrowavedielectricmaterialwithpracticalcharacteristics.(2)Todevelopnewceramicsystemwithhighdielectricconstant(år>100),highQvalueandlowfrequencytemperaturecoefficient(3)TodevelopfilterswithattenuationpolesinthestopbandfortheapplicationsinLandSBand.61 (4)Todeveloptheprocesstopreparethemicrowavedielectricfilms.(5)Todevelopplanarmicrowavedeviceswithrelativeco-firetechnology.(6)Todevelopamethodformodelinganddesigningofthecoaxial-typemicrowavedielectricfilters.62 References[1]W.D.Kingery,H.K.BowenAndD.R.Uhlmann,“IntroductiontoCeramics,”2ndEdn(J.Wiley,NewYork,1976)p.461[2]KajfezandP.Guillon:DielectricResonators(ArtechHouse,Massachusetts,1986)p.345.[3]L.Chai,M.A.Akbas,P.K.DaviesandJ.B.Parise,“CationOrderingTransformationinBa(Mg1/3Ta2/3)O3-BaZrO3PerovskiteSolidSolution,”MatRes.Bull,33(9)(1998)1261-69.[4]M.FuruyaandA.Ochi,“MicrowaveDielectricPropertiesforBa(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3(A=Ba,Sr,andCa)Ceramics,”Jpn.J.Appl.Phys.,33(1994)5482-87[5]V.M.Ferreir,F.Azough,I.L.BaptisaandR.Freer,“MagnesiumTitanateMicrowaveDielectricCeramics,”Ferroelectrics,133(1992)127-132.[6]W.Y.LinandR.F.Spreyer,“DielectricPropertiesofMicrostructure-ControlledBa2Ti9O20Resonators,”J.Am.Ceram.Soc.,82〔2〕325-30(1999).[7]B.W.Hakki.andP.D.Coleman,“ADielectricResonatorMethodofMeasuringInductiveintheMillimeterRange,”IEEETrans,MTT-16,July(1985)402-406.[8]Y.KobayashiandM.Katoh,”MicrowaveMeasurementofDielectricPropertiesofLow-LossMaterialsbytheDielectricRodResonatorMethod,”IEEETrans,MTT-33,No.7,July(1985).[9]T.Nishikawa,K.Wakino,H.Tamure,H.Tanaka,andYIshikawa,“PreciseMeasurementMethodforTemperatureCoefficientofMicrowaveDielectricResonatorMaterial”,IEEE63 MTT-SInt.MicrowaveSymp.,Dig.,(1980)3277-3280.[10]S.Y.Cho,I.T.KimandK.S.Hong,“Microwavedielectricpropertiesandapplicationsofrare-earthaluminates,”J.Mater.Res.,14,114(1999)[11]D.G.Lim,B.H.Kim,T.G.KimandH.J.Jung,“MicrowaveDielectricPropertiesofthe(1-x)LaAlO3-xTiO2System,”MaterialsResearchBulletin,Vol.34,Nos.10/11,(1999)1577-1582[12]H.C.Lu,L.E.BurkhartandG.L.Schrader,“Sol-GelProcessforthePreparationofBa2Ti9O20andBaTi5O11,”J.Am.Ceram.Soc.,74[5](1991)968-72[13]O.Renount,J.P.BoiltandF.Chaput,“Sol-gelProcessingandMicrowaveCharacteristicsofBa(Mg1/3Ta2/3)O3Dielectrics,”J.Am.Ceram.Soc.,75(12),3337-40(1992)[14]S.Katayama,I.Yoshinaga,N.YamadaandT.Nagai,“Low-TemperatureSynthesisofBa(Mg1/3Ta2/3)O3CeramicsfromBa-Mg-TaAlkoxidePrecursor,”J.Am.Ceram.Soc.,79[8](1996)2059-64.[15]T.Takada,S.F.Wang,S.Yoshikawa,S.J.JangandR.E.Newnham,”EffectofGlassAdditionsonBaO-TiO2-WO3MicrowaveCeramics”,J.Am.Ceram.Soc.,7(1994)1909-1916.[16]C.M.Cheng,C.F.Yang,andS.H.Lo,“SinteringandDielectricPropertiesofBa2Ti9O20MicrowaveCeramicsbyGlassAddition”,Jpn.J.Appl.Phyys36,L1604-L1607.[17]C.C.LeeandP.Lin,“EffectofGlassAdditionsonMicrowavePropertiesof64 BaO-La2O3-4.7TiO2’’,Jpn.J.Appl.Phys.,37,(1998)6048-6054.[18]C.S.HsuandC.L.Huang,“EffectsofCuOadditiveonSinteringandMicrowaveDielectricBehaviorsofLaAlO3Ceramics”Mat.Res.Bull.36,(2001).[19]D.W.Kim,K.H.KoandK.S.Hong,“InfluenceofCoperOxideAddtionstoZincNiobateMicrowaveCeramicsonSinteringTemperatureandDielectricProperties,”J.Am.Ceram.Soc.84(2001)286[20]C.L.HuangandM.H.Weng,“EffectofCuOAddtionon(Zr,Sn)TiO4MicrowaveDielectricCeramics,”Mat.Res.Bull.35,(2000)1881[21]M.Valant,D.SuvorovandD.Kolar,“RoleofBi2O3inOptimizingtheDielectricPropertiesofBa4.5Nd9Ti18O54-BasedMicrowaveCeramics,”J.Mater.Res.,11[4](1996)928-931.[22]C.L.Huang,M.H.WengandH.L.Chen,“EffectofadditivesonMicrostructuresandmicrowavedielectricpropertiesof(Zr,Sn)TiO4ceramics,”MaterialsChemistryandPhysics8996(2001)1-6[23]T.Takada,S.F.Wang,andSyoshikawa,S.T.JangandR.E.Newnham,“EffectofGlassAdditionon(Zr,Sn)TiO4forMicrowaveApplications,”J.Am.Ceram.Soc.,77(1994)1909.[24]R.Kudesia,A.E.MchaleandR.L.Snyder,“EffectofLaO2/ZnOAdditivesonMicrostructureandMicrowaveDielectricPropertiesofZr0.8Sn0.2TiO4Ceramics,”J.Am.Ceram.Soc,77,(1994)3215.65 [25]H.Yamamoto,A.Koga,S.ShibagakiandN.Ichinose,“Low-TemperatureFiringofMgTiO3-CaTiO3MicrowaveDielectricCeramicsModifiedwithB2O3orV2O5,”J.Ceram.Soc.Jpn.,106[3](1998)339-343[26]H.Kagata,T.Inoue,J.KatoandI.Kameyama,“Low-FireBismuth-BasedDielectricCeramicsforMicrowaveUse”,Jpn.J.Appl.Phys.,31,(1992)3252-3255[27]K.R.Han,J.W.Jang,S.Y.Cho,D.Y.JeongandK.S.Hong,“PreparationanddielectricPropertiesofLow-Temperature-Sinterable(Zr0.8Sn0.2)TiO4Powder”,J.Am.Ceram.Soc.,81,(1998)1209-14.[28]A.Yamada,Y.UtsumiandH.Watarai,“TheeffectofMnAdditiononDielectricPropertiesandMicrostructureofBaO-Nd2O3Ceramics,”Jpn.J.Appl.Phys.,30.9B(1991)2350-2353.[29]H.T.Kim,S.H.Kim,S.NahmandJ.D.Byun,“Low-TemperatureSinteringandMicrowavePropertiesofZincMateritanate-RutileMixturesUsingBoron,”J.AmCeram.Soc.,82(11)(1999)3043-3048.[30]M.Valant,D.SuvorovandD.Kolar,“RoleofBi2O3inOptimizingtheDielectricPropertiesofBa4.5Nd9TI18O54-TiO2BasedMicrowaveCeramics,”J.Mat.Res.,11(4)(1996)928-931.[31]M.F.Yan,H.C.LingandW.W.Rhodes,“Low-FiringTemperature-StableDielectricCompositionsBasedonBismuthNikelZincNiobates,”J.Am.Ceram.Soc.,73〔4〕(1990)66 1106-107.[32]V.Satheesh,P.Murugavel,V.R.K.MurthyandB.Viswanathan,“SynthesisandRoleofNdandSmDotheMicrowaveDielectricPropertiesofBaNd2(1-x)Sm2xTi5O14DielectricResonator,”MaterialScienceandEngineeringB48(1997)202-204[33]P.Laffez,G.Desgardin,andB.Raveau,“MicrowaveDielectricPropertiesofDopedBa6-x(Sm1-y,Ndy)8+2/3xTi18O54Oxides,”JournalofMaterialsScience,30(1995)267–273.[34]H.Ohsato,T.Ohhashi,S.Nishigaki,T.Okuda,K.SumiyaandS.Suzuki,“MicrowaveDielectricPropertiesandStructureoftheBa6-3xSm8+2xTi18O54”,Jpn.J.Appl.Phys.32(1993)4323.[35]M.Mizuta,K.Uenoyama,H.Ohsato,S.Nishigaki,andT.Okuda,“FormationofTungsten-Bronze-Type(Ba6-3xSm8+2x)áTi18-yAlyO54SolidSolutionandMicrowaveDielectricProperties”,Jan.J.Appl.Phys.Vol.36(1996)5056-5068.[36]M.Imaeda,K.Ito,M.Mizuta,H.Ohsato,S.NishigakiandT.Okuda,“MicrowaveDielectricPropertiesandStructureoftheBa6-3xSm8+2xTi18O54withSrSubstitudedforBa”,Jan.J.Appl.Phys.Vol.36(1997)6012-6015[37]A.J.MousonandJ.M.Herbert,ElectroceramicsMaterialsPropertiesApplicationsCHAPMAMandHALL,288-290,(1990).[38]BernardJaffeWilliamR.Cook,HansJaffe,PiezoelectricCeramics,ACADEMIC67 PRESS,212-217,(1971).[39]WernerKanzig:FerroelectricsandAntiferroelectrics,ACADEMICPRESS,171-172,(1957).[40]C.J.Rawn,D.P.BirineM.A.BruckandJ.H.Enemark,“StructuralInvetigationofBa6-3xLa8+2xTi18O54(x=0.27,Ln=Sm)bySingleCrystalX-rayDiffractioninSpaceGroupPnma(No.62)J.Mater.Res.,13,No.1,Jan(1998)187-196.[41]R.Ubic,I.M.ReancyandW.E.Lee,“SpaceGroupDeterminationofBa6-3xNd8+2xTi18O54”,J.Am.Ceram.Soc.82[5](1999)1336-1338.[42]H.Oshato,S.Nishigaki,andT.Okuda,“SuperlatticeandDielectricPropertiesofBaO-R2O3-TiO2(R=La,Nd,andSm)MicrowaveDielectricCompounds,”Jan.J.Appl.Phys.Vol.31(1992)3136-3138.[43]K.Fukuda,I.Fujii,R.KiToh,Y.ChoandI.Awai,“InfluenceofRareEarthIonsonBaO-TiO4-RareEarthOxideCeramicsforMicrowaveApplications,”Jpn.J.Appl.Phys.,32(1993)1712-1715.[44]H.Ohsato,H.kato,M.Mizuta,S.NishigakiandT.Okuda,“MicrowaveDielectricPropertiesoftheBa6-x(Sm1-y,Ry)8+2/3xTi18O54(R=NdandLa)SolidSolutionwithZeroTemperatureCoefficientoftheresonantFrequency,”Jan.J.Appl.Phys.32(1995)5413-5417.[45]H.Oshato,A.Komura,Y.Tagaki,S.Nishigaki,andT.Okuda,“MicrowaveDielectric68 PropertiesandSinteringofBa6-3xR8+2xTi18O54(R=Sm,x=2/3)SolidwithAddedRutile,”Jan.J.Appl.Phys.Vol.31(1992)3136-3138[46]J.M.WuandM.C.Chang,”ReactionSequenceandEffectsofCalcinationandSinteringonMicrowaveProprertiesof(Ba,Sr)O-Sm2O3-TiO4Ceramics”,J.Am.Ceram.Soc.,73(6)(1990)1599-605[47]S.Nishigaki,H.Kato,S.YangandRKamimura,“MicrowaveDielectricPropertiesof(Ba,Sr)O-Sm2O3-TiO2,”CeramicsAm.Ceram.Soc.Bull.66(1987)1405-1410.[48]M.Sagawa,M.Makimoto,andS.Yamashita,“ADesignMethodofBandpassFiltersUsingDielectric-FilledCoaxialResonators”,IEEETrans.MicrowaveTheoryTech.,vol.MTT–33,2,(1985)152-157.[49]M.MakimotoandS.Yamashita,“CompactBandpassFiltersUsingSteppedImpedanceResonators”,IEEETransactionsMicrowaveTheoryTech.,vol.67,pp.16-19,Jan.1979.l[50]K.Hano,H.Kohriyama,andK.Sawamoto,“ADirect-Coupled-CoaxialResonator4BandpassFilterforLandMobileCommunications,”IEEETrans.MicrowaveTheoryTech.,MTT–34,9,(1986)972-976[51]Cheng-LiangHuangandCheng-ChyiYou,“AnalysisandDesignofInhomogeneousCoupled-StriplineMicrowaveBandpassFilters”,MicrowaveJournal,Vol.41,No.9,pp.114-124,September,1998.[52]G.L.Matthaei,“InterdigitalBand-passFilter”,IEEETrans.MicrowaveTheoryTech.,69 vol.MTT–10,(1962)479-491.[53]S.CaspiandJ.Adelman,“DesignofComblineandInterdigitalFilterwithTapped-LineInput,”IEEETrans.MicrowaveTheoryTech.,vol.MTT–36,no.4,pp.759-763,April1988.[54]G.L.Matthaei,“Comb-lineBand-passFilterofNarroworModerateBandwidth”,IEEETrans.MicrowaveTheoryTech.,vol.MTT-6,(1963)82-91,[55]L.Young,“Direct-coupledCavityFiltersforWideandNarrowBandwidth,”IEEETrans.MicrowaveTheoryTech.,vol.MTT-11,pp162-178,May1963.[56]R.Levy,“TheoryofDirectCoupled-CavityFilters”,IEEETrans.MicrowaveTheoryTech.,vol.MTT-15,(1967)340-348.[57]J.A.G.Malherbe,“MicrowaveTransmissionLine,”ArtechHouse,INC.,1979.[58]Cheng-ChyiYou,Cheng-LiangHuang,andChung-ChuangWei,“Single-BlockCeramicMicrowaveBandpassFilters,”MicrowaveJournal,Vol.37,No.11,pp.24-35,November,1994.[59]J.K.PlourdeandC.L.Ren,“ApplicationsofDielectricResonatorsinMicrowaveComponents”,IEEETrans.MicrowaveTheoryTech.,vol.MTT-29,(1981)754-770,[60]S.B.Chon,“MicrowaveBandpassFiltersContainingHighQDielectricResonators”,IEEETrans.MicrowaveTheoryTech.,MTT-16,(1968)218-227.[61]H.Matsumoto,T.Yorita,andT.Nishikawa,“MiniaturizedDuplexerUsingRectangular70 CoaxialDielectricResonatorsforCellularPortableTelephone”IEICETransaction,volE74.No.5May1991.[62]S.YamashitaandM.Makimoto,“MiniaturizedCoaxialResonatorPartiallyLoadedwithHigh-dielectric-ConstantMicrowaveCeramics,”IEEETransactionsMicrowaveTheoryTech,vol.MTT-31,No.9(1983)698-703.[63]C.C.You,Cheng-LiangHuangandChung-ChungWei,“Single-blockceramicMicrowaveBandpassFilters,”MicrowaveJournal,(1994)24-33,71 RquiredCharacteristicsEffectsLargedielectricconstantSmallsizedevicesHighqualityfactorLowlossdevicesSmalltemperaturecoefficientHighstabilityTable1-1Propertiesrequiredformicrowavedielectricresonators72 Table1-2Recentdevelopmentforthemicrowavedielectricmaterials73 SpecificationsofbandpassfilterCenterfrequency900MHzFilterresponseChebyshevtypeBandwidth25MHzNumberofresonators3stagesPassbandripple0.1dBTable5-1Specificationsofacompactfilterneedtobeachieved.74 E=0Eelectronicpolarization++atomicpolarization+-+-orientationpolarizationspacechargepolarization+-+-++++---+-+-+--+-+-+-++++---+-+-++---Fig.2-1Variouspolarizationmechanismsinmaterials75 Fig.2-2Thestructureofshieldeddielectricresonator76 Fig.2-3thepostmethodwitharadialdielectrometerformicrowavedielectricmeasurements77 LALALArLArLAr010101wwwChebyshevresponseEllipticresponseMaximallyflatresponseFig.2-4Threetypesoffilters(a)MaximallyFlat(b)Chebyshev(c)EllipticFunction78 Fig.2-5Alow-passprototypefilter79 GJB(w)JB(w)JB(w)JG001112223nn,n+1n+1X(w)X(w)X(w)12nRKKKKR0011223n,n+1n+1Fig.2-6(a)K-inverter(b)J-inverter80 RawmaterialsPVAbinderBallmillingGranulatingDryingColdPressingCalcinationDebinderBallmillingSinteringDryingDenseBulkFig.3-1Flowchartofexperimentprocedureofdielectricresonators81 Fig.3-2X-raydiffractionpatternsofSmAlO3ceramicswith0.25wt%CuOsinteredatdifferenttemperatures.82 Fig.3-3X-raydiffractionpatternsofSmAlO3ceramicswith0.25wt%and0.5wt%additions(CuOandZnO)sinteredat1410℃.83 Fig.3-4X-raydiffractionpatternsofSmAlO3ceramicswithvariousamountofCuOadditionssinteredat1430℃.84 Fig.3-5(a)EDSanalysisofSmAlO3ceramicsforgeneralregions.Fig.3-5(b)EDSanalysisofSmAlO3ceramicsforspecificgrainswithSm4Al2O9secondphase.85 Fig.3-6(a)SEMmicrographofSmAlO3with0.5wt%CuOsinteredat1430℃.Fig.3-6(b)SEMmicrographofSmAlO3with1wt%CuOsinteredat1430℃Fig.3-6(c)SEMmicrographofSmAlO3with0.5wt%ZnOsinteredat1430℃Fig.3-6(d)SEMmicrographofSmAlO3with1wt%ZnOsinteredat1430℃.86 Fig.3-7XRDpatternsofNdAlO3powderscalcinedatdifferenttemperaturesfor2h.87 Fig.3-8XRDpatternsofNdAlO3ceramicswith0.25wt%CuOsinteredatdifferenttemperatures.88 Fig.3-9XRDpatternsofNdAlO3ceramicswithvariousCuOconcentrationssinteredat1410℃.89 Fig.3-10(a)SEMofNdAlO3ceramicssinteredat1410℃with0.25wt%CuOadded.Fig.3-10(b)SEMofNdAlO3ceramicssinteredat1410℃with0.5wt%CuOadded.Fig.3-10(c)SEMofNdAlO3ceramicssinteredat1410℃with0.75wt%CuOadded.Fig.3-10(d)SEMofNdAlO3ceramicssinteredat1410℃with1wt%CuOadded.90 Fig.3-11(a)SEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1390℃Fig.3-11(b)SEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1410℃Fig.3-11(c)SEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1430℃Fig.3-11(d)SEMofNdAlO3ceramicswith0.75wt%CuOaddedsinteredat1450℃91 6543Grainsizes(um)20.25wt%CuO0.5wt%CuO10.75wt%CuO1wt%CuO0138013901400141014201430144014501460oSinteringTemperature(C)Fig.3-12GrainsizeofNdAlO3ceramicssinteredat1410℃asafunctionofCuOconcentration.1000.25wt%CuO990.5wt%CuO1wt%CuO0.5wt%ZnO981wt%ZnO979695RelativeDensity(%)94939213801390140014101420143014401450146014701480oSinteringTemperature(C)Fig.3-13Therelativedensitiesofaddition-sinteredSmAlO3ceramicsasafunctionofsinteringtemperatures.92 9998979695940.25wt%CuO93RelativeDensity(%)0.5wt%CuO920.75wt%CuO911wt%CuO901350137013901410143014501470SinteringTemperature(oC)Fig.3-14RelativedensitiesofCuO-sinteredNdAlO3ceramicsasafunctionofsinteringtemperature.2120.5)r2019.50.25wt%CuO190.5wt%CuODielectricConstant(å1wt%CuO0.5wt%ZnO18.51wt%ZnO1813801390140014101420143014401450146014701480SinteringTemperature(oC)Fig.3-15DielectricconstantofSmAlO3ceramicswithdifferentadditionsasfunctionofsinteringtemperature.93 700000.25wt%CuO0.5wt%CuO600001wt%CuO0.25wt%ZnO500000.5wt%ZnO4000030000Q×f(GHz)2000010000013801390140014101420143014401450146014701480SinteringTemperature(oC)Fig.3-16Q×fvaluesofSmAlO3ceramicswithdifferentadditionsasafunctionofsinteringtemperature.-30-35)f-40-45-50-55-60CuOTemperatureCoefficient(ôZnO-65-7000.250.50.7511.25AmountofAdditions(wt%)Fig.3-17ThecompositiondependenceonôfofSmAlO3ceramicssinteredat1430℃94 2322.52221.5210.25wt%CuODielectricconstant(år)0.5wt%CuO0.75wt%CuO20.51wt%CuO20136013801400142014401460Sinteringtemperature(0C)Fig.3-18DielectricconstantårofNdAlO3ceramicsasafunctionofsinteringtemperature.800000.25wt%CuO0.5wt%CuO700000.75wt%CuO1wt%CuO600005000040000f×Q(Hz)3000020000100000138013901400141014201430144014501460SinteringTemperature(oC)Fig.3-19Q×fvaluesofNdAlO3ceramicswithvariousCuOconcentrationsasfunctionsofsinteringtemperature.95 -10-150.25wt%CuOf)τ0.5wt%CuO-200.75wt%CuO-251wt%CuO-30-35-40TemperatureCoefficient(-45-50138013901400141014201430144014501460SinteringTemperature(℃)Fig.3-20CompositiondependenceonôfofNdAlO3ceramicsasafunctionofsinteringtemperature.96 Fig.4-1TheSchematicdiagramofBSTceramicswithcomplexphaseoftungstenbronzestructure97 Fig.4-2Projectionofthetungstenbronzestructureinthecplane.Theinsetshowsthepolardirectionsinorthorhombicstructure.98 Fig.4-3X-raydiffractionpatternsofBa(2-x)Sm(4+2/3x)Ti9O26ceramicssinteredat1360℃for4hourswithx=0.0,x=0.1,x=0.2,x=0.3.99 Fig.4-4aMicrographofBa(2-x)Sm(4+2/3x)Ti9O26ceramicswithx=0.1sinteredat1340℃Fig.4-4bMicrographofBa(2-x)Sm(4+2/3x)Ti9O26ceramicswithx=0.1sinteredat1360℃Fig.4-4cMicrographofBa(2-x)Sm(4+2/3x)Ti9O26ceramicswithx=0.1sinteredat1380℃100 Fig.4-5aPhotographofthesinteredsurfacewithsecondphaseBa2Ti9O20thatwasidentifiedwiththeenergydispersiveX-rayspectrometer(EDS)analysis.Fig.4-5bEnergydispersiveX-rayspectrometer(EDS)resultofthesinteredsurfaceshowninFig.4-5a.101 Fig.4-5cPhotographofthesinteredsurfacewithintermediatephaseSm2Ti2O7thatwasidentifiedwiththeenergydispersiveX-rayspectrometer(EDS)analysis.Fig.4-5dEnergydispersiveX-rayspectrometer(EDS)resultofthesinteredsurfaceshowninFig.4-5c102 Fig.4-6Macrodifferentialthermalanalysis(DTA)oftheBa2-xSm4+2x/3Ti8+yO24+2yrawmaterials103 Fig.4-7X-raydiffractionpatternsofBa2-xSm4+2x/3Ti8+yO24+2y(x=0.1,y=1)ceramicscalcinedatvarioustemperatures.104 Fig.4-8X-raydiffractionpatternsofBa2-xSm4+2x/3Ti8+yO24+2yceramicssinteredattheirspecificdensifiedtemperatures(+and□markersareidentifiedasthemainphaseBaSm2Ti4O12,BaSm2Ti5O14).105 Fig.4-9aMicrographofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithy=0sinteredat1400℃Fig.4-9bMicrographofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithy=1sinteredat1370℃Fig.4-9cMicrographofBa2-xSm4+2x/3Ti8+yO24+2yceramicswithy=2sinteredat1330℃106 5.9)35.75.5x=0.05.3apperantdensity(g/cmx=0.1x=0.2x=0.35.113201340136013801400sinteringtemperature(℃)Fig.4-10ApparentdensitiesofBa2-xSm4+2/3xTi9O26ceramicsasafunctionofsinteringtemperatureandcomposition65.8)35.65.4y=0Density(g/cmy=0.55.2y=1y=1.5y=251300132013401360138014001420Temperature(℃)Fig.Fig.4-11ApparentdensitiesofBa2-xSm4+2x/3Ti8+yO24+2yceramicsasafunctionofsinteringtemperatureandcomposition(x=0.1)107 15000x=0.0x=0.112000x=0.2x=0.39000(GHz)6000Q×f30000130013201340136013801400sinteringtemperature(℃)Fig.4-12Q×fvaluesofBa2-xSm4+2/3xTi9O26ceramicsasafunctionSinteringtemperatureandcomposition1400012000100008000f.Qvalue(GHz)6000y=0y=0.5y=14000y=1.5y=2200013101320133013401350136013701380139014001410Temperature(℃)Fig.4-13Q×fvaluesofBa2-xSm4+2x/3Ti8+yO24+2yceramicsceramicsasafunctionofsinteringtemperatureandcomposition(x=0.1).108 81)78r75726966x=0.0x=0.1dielectricconstant(å63x=0.2x=0.360130013201340136013801400sinteringtemperature(℃)Fig.4-14DielectricconstantofBa2-xSm4+2/3xTi9O26ceramicsasafunctionofsinteringtemperatureandcomposition8580r757065y=0y=0.5Dielectricconstantå60y=1y=1.555y=2501300132013401360138014001420Temperature(℃)Fig.4-15DielectricconstantofBa2-xSm4+2x/3Ti8+yO24+2yceramicsasafunctionofsinteringtemperatureandcomposition(x=0.1).109 )9℃630-3temperaturecoefficient(ppm/-600.050.10.150.20.250.30.35xvalueFig.4-16TemperaturecoefficientoftheresonantfrequencyôfofBa2-xSm4+2/3x)Ti9O26ceramicssinteredat1360℃20151050-5y=0Temperaturecoefficienty=0.5-10y=1y=1.5-15y=2-2000.050.10.150.20.250.3xvalueFig.4-17TemperaturecoefficientôfofBa2-xSm4+2x/3Ti8+yO24+2yceramicssinteredattheirspecificsinteringtemperatureasafunctionofcomposition.110 Fig.5-1TheconfigurationofasinteredcoaxialresonatorwithcouplingapertureFig.5-2Theconfigurationofathree-stagecapacitivecouplingbandpassfilter111 Fig.5-3TheequivalentcircuitofthefirststageloadedbytheexternalcircuitFig.5-4aTheequivalentcircuitoftwoadjacentresonatorswithcouplingcapacitor112 Fig.5-4bTheequivalentcircuitoftwoadjacentresonatorswithcouplingcapacitorFig.5-5Theequivalentcircuitofthethree-stagebandpassfilterwiththeexternalcircuit.113 Fig.5-6aTheschematicdiagramoftotalcapacitancebetweentwoadjacentresonatorsandthegroundwhenthetransmissionlinesaredriveninoddmode.Fig.6bTheschematicdiagramoftotalcapacitancebetweentwoadjacentresonatorsandthegroundwhenthetransmissionlinesaredriveninevenmode.114 Fig.5-7aThefrequencyresponseoftheexperimentalbandpassfiltersbyair-gapcouplingFig.5-7bThefrequencyresponseoftheexperimentalbandpassfiltersbydirectcoupling115

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签
关闭