Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution

Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution

ID:34905023

大小:1.07 MB

页数:78页

时间:2019-03-13

Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution_第1页
Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution_第2页
Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution_第3页
Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution_第4页
Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution_第5页
资源描述:

《Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、QuantumGroups,theloopGrassmannian,andtheSpringerresolution.SergeyArkhipov,RomanBezrukavnikov,andVictorGinzburgAbstractWeestablishequivalencesofthefollowingthreetriangulatedcategories:G(Ne)←→DDquantum(g)←→Dcoherentperverse(Gr).Here,Dquantum(g)istheder

2、ivedcategoryoftheprincipalblockoffinitedimensionalrepresentationsofthequantizedenvelopingalgebra(atanoddrootofunity)ofacomplexsemisimpleLiealgebrag;thecategoryDG(Ne)isdefinedintermsofcoherentsheavesonthecotangentbundleonthecoherent(finitedimensional)flag

3、manifoldforG(=semisimplegroupwithLiealgebrag),andthecategoryDperverse(Gr)isthederivedcategoryofperversesheavesontheGrassmannianGrassociatedwiththeloopgroupLG∨,whereG∨istheLanglandsdualgroup,smoothalongtheSchubertstratification.TheequivalencebetweenDqu

4、antum(g)andDG(Ne)isan‘enhancement’oftheknownex-coherentpression(duetoGinzburg-Kumar)forquantumgroupcohomologyintermsofnilpotentvariety.TheequivalencebetweenDperverse(Gr)andDG(Ne)canbeviewedasa‘categorification’oftheiso-coherentmorphismbetweentwocomple

5、telydifferentgeometricrealizationsofthe(fundamentalpolynomialrepresentationofthe)affineHeckealgebrathathasplayedakeyroleintheproofoftheDeligne-Langlands-Lusztigconjecture.Onerealizationisintermsoflocallyconstantfunctionsontheflagmanifoldofap-adicreductiv

6、egroup,whiletheotherisintermsofequivariantK-theoryofacomplex(Steinberg)varietyforthedualgroup.Thecompositeofthetwoequivalencesaboveyieldsanequivalencebetweenabeliancategoriesofquantumgrouprepresentationsandperversesheaves.Asimilarequivalenceatanevenr

7、ootofunitycanbededuced,followingLusztigprogram,fromearlierdeepresultsofKazhdan-LusztigandKashiwara-Tanisaki.Ourapproachisindependentoftheseresultsandistotallydifferent(itdoesnotrelyonrepresentationtheoryofKac-Moodyalgebras).ItalsogiveswaytoprovingHump

8、hreys’conjecturesontiltingUq(g)-modules,aswillbeexplainedinaseparatepaper.TableofContents1.IntroductionI.Algebraicpart2.Variousquantumalgebras3.Algebraiccategoryequivalences4.ProofofInductiontheoremarXiv:math.RT/0304173v321Apr20045.ProofofQuantumgrou

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签