欢迎来到天天文库
浏览记录
ID:34905023
大小:1.07 MB
页数:78页
时间:2019-03-13
《Springer.Quantum.Groups.The.Loop.Grassmannian.And.The.Springer.Resolution》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、QuantumGroups,theloopGrassmannian,andtheSpringerresolution.SergeyArkhipov,RomanBezrukavnikov,andVictorGinzburgAbstractWeestablishequivalencesofthefollowingthreetriangulatedcategories:G(Ne)←→DDquantum(g)←→Dcoherentperverse(Gr).Here,Dquantum(g)istheder
2、ivedcategoryoftheprincipalblockoffinitedimensionalrepresentationsofthequantizedenvelopingalgebra(atanoddrootofunity)ofacomplexsemisimpleLiealgebrag;thecategoryDG(Ne)isdefinedintermsofcoherentsheavesonthecotangentbundleonthecoherent(finitedimensional)flag
3、manifoldforG(=semisimplegroupwithLiealgebrag),andthecategoryDperverse(Gr)isthederivedcategoryofperversesheavesontheGrassmannianGrassociatedwiththeloopgroupLG∨,whereG∨istheLanglandsdualgroup,smoothalongtheSchubertstratification.TheequivalencebetweenDqu
4、antum(g)andDG(Ne)isan‘enhancement’oftheknownex-coherentpression(duetoGinzburg-Kumar)forquantumgroupcohomologyintermsofnilpotentvariety.TheequivalencebetweenDperverse(Gr)andDG(Ne)canbeviewedasa‘categorification’oftheiso-coherentmorphismbetweentwocomple
5、telydifferentgeometricrealizationsofthe(fundamentalpolynomialrepresentationofthe)affineHeckealgebrathathasplayedakeyroleintheproofoftheDeligne-Langlands-Lusztigconjecture.Onerealizationisintermsoflocallyconstantfunctionsontheflagmanifoldofap-adicreductiv
6、egroup,whiletheotherisintermsofequivariantK-theoryofacomplex(Steinberg)varietyforthedualgroup.Thecompositeofthetwoequivalencesaboveyieldsanequivalencebetweenabeliancategoriesofquantumgrouprepresentationsandperversesheaves.Asimilarequivalenceatanevenr
7、ootofunitycanbededuced,followingLusztigprogram,fromearlierdeepresultsofKazhdan-LusztigandKashiwara-Tanisaki.Ourapproachisindependentoftheseresultsandistotallydifferent(itdoesnotrelyonrepresentationtheoryofKac-Moodyalgebras).ItalsogiveswaytoprovingHump
8、hreys’conjecturesontiltingUq(g)-modules,aswillbeexplainedinaseparatepaper.TableofContents1.IntroductionI.Algebraicpart2.Variousquantumalgebras3.Algebraiccategoryequivalences4.ProofofInductiontheoremarXiv:math.RT/0304173v321Apr20045.ProofofQuantumgrou
此文档下载收益归作者所有
点击更多查看相关文章~~