资源描述:
《K-theory, Chern-Connes Character and Algebraic Novikov Conjecture - Yihan Zhang.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、K-theory,Chern-ConnesCharacterandAlgebraicNovikovConjectureYihanZhangJanuary16,2016Contents1K-theory12Chern-ConnesCharacter23AlgebraicK-theoryandNovikovConjecture31K-theoryRecallhistoryofK-theory.1.Grothendick,Riemann-RochTheorem(foralgebraicvariety).2.Atiyah,Hirzebruch,topologicalK-theor
2、y.3.Quillen,Milnor,Bass,algebraicK-theory.Applications:topology,operatoralgebra,algebra,numbertheory,etc.r11r1n∪R,aunitalring.M(R)=:r2R:M(R)=1M(R).nij1n=1nrn1rnnr11r1n0r11r1nMn(R), !Mn+1(R);!:Idempotentp2M1(R),rn1rnn0rn1rnn00
3、p2=p.Example1.X,acompactspace.R=C(X).Idempotentp2M1(C(X))()vectorbundleoverX.p:X!Mn(C);x7!p(x).1Idempotent(M1(R))=,abeliansemigroup.Twoidempotents[(p;qaresaidtobeequiv-)] 1p0alentif9aninvertiblew2Mn(R)s.t.wpw=q.[p]+[q]=.Noticethat0q() 1()()()01p001q0=:100q100pGrothendickprocessS(abelians
4、emigroup) !G(S)(abeliangroup).G(s)=f(s;t):s;t2Sg=.(s;t)(s0;t0)i9x2Ss.t.s+t0+x=s0+t+x. [(s;t)]=[(t;s)].Example2.S=N;G(s)=Z.Example3.S=N[f+1g;G(S)=f0g.Noticethat(s;t)(s0;t0);s+t0+1=s0+t+1.Denition1.K0(R)=G(Idempotent(M1(R))=).{∑} ,agroup.Groupring,C =g2 cgg:cg2C,whereelement
5、sarenitesum.{∑}U:`2( )!`2( ),(U)(x)=(g 1x).ThenC =cUB(`2( )).ggg2 gg{∑}R,aring.Groupring,R =g2 rgg:rg2R.Question:whatisK0(R )?2Chern-ConnesCharacterp8p1;T:H!HiscalledaSchattenp-classoperatoriftr(TT)2<+1.T=p∑1pdiag(c1;;cn;),tr(TT)2=n=1jcnj<+1.∪1Denition2.Sp,theringofallSchatt
6、enp-classoperators.S=p=1Sp,theringofallSchattenclassoperators. ,agroup.S,theringofSchattenclassoperators.S ,thegroupring.Motivations:Connes-Moscovici'shigherindextheory(1990s,Topology).M2n,acompactmanifold.D,anellipticdierentialoperatoronM2n.Higherindex,indexD2K(S ), =M.01ApproximatingK
7、0(S )usinglocallynitesimplicialhomologygroupofPF( ). ,agroup.8F ,anitesubset.Denition3.TheRips'complexPF( )isasimplicialcomplexwhosesetofverticesis 1andf0;;
ngspansasimplexiij2F.Example4. =Z.F=f1g.fn0;n1gspansasimplex.n1 n02F=f1g.PF( )formsaline.Example5.