K-theory, Chern-Connes Character and Algebraic Novikov Conjecture - Yihan Zhang.pdf

K-theory, Chern-Connes Character and Algebraic Novikov Conjecture - Yihan Zhang.pdf

ID:34891301

大小:63.30 KB

页数:3页

时间:2019-03-13

K-theory, Chern-Connes Character and Algebraic Novikov Conjecture - Yihan Zhang.pdf_第1页
K-theory, Chern-Connes Character and Algebraic Novikov Conjecture - Yihan Zhang.pdf_第2页
K-theory, Chern-Connes Character and Algebraic Novikov Conjecture - Yihan Zhang.pdf_第3页
资源描述:

《K-theory, Chern-Connes Character and Algebraic Novikov Conjecture - Yihan Zhang.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、K-theory,Chern-ConnesCharacterandAlgebraicNovikovConjectureYihanZhangJanuary16,2016Contents1K-theory12Chern-ConnesCharacter23AlgebraicK-theoryandNovikovConjecture31K-theoryRecallhistoryofK-theory.1.Grothendick,Riemann-RochTheorem(foralgebraicvariety).2.Atiyah,Hirzebruch,topologicalK-theor

2、y.3.Quillen,Milnor,Bass,algebraicK-theory.Applications:topology,operatoralgebra,algebra,numbertheory,etc.r11r1n∪R,aunitalring.M(R)=:r2R:M(R)=1M(R).nij1n=1nrn1rnnr11r1n0r11r1nMn(R),!Mn+1(R);!:Idempotentp2M1(R),rn1rnn0rn1rnn00

3、p2=p.Example1.X,acompactspace.R=C(X).Idempotentp2M1(C(X))()vectorbundleoverX.p:X!Mn(C);x7!p(x).1Idempotent(M1(R))=,abeliansemigroup.Twoidempotents[(p;qaresaidtobeequiv-)]1p0alentif9aninvertiblew2Mn(R)s.t.wpw=q.[p]+[q]=.Noticethat0q()1()()()01p001q0=:100q100pGrothendickprocessS(abelians

4、emigroup)!G(S)(abeliangroup).G(s)=f(s;t):s;t2Sg=.(s;t)(s0;t0)i 9x2Ss.t.s+t0+x=s0+t+x.[(s;t)]=[(t;s)].Example2.S=N;G(s)=Z.Example3.S=N[f+1g;G(S)=f0g.Noticethat(s;t)(s0;t0);s+t0+1=s0+t+1.De nition1.K0(R)=G(Idempotent(M1(R))=).{∑},agroup.Groupring,C=g2cgg:cg2C,whereelement

5、sare nitesum.{∑}U:`2()!`2(),(U)(x)=(g1x).ThenC=cUB(`2()).ggg2gg{∑}R,aring.Groupring,R=g2rgg:rg2R.Question:whatisK0(R)?2Chern-ConnesCharacterp8p1;T:H!HiscalledaSchattenp-classoperatoriftr(TT)2<+1.T=p∑1pdiag(c1;;cn;),tr(TT)2=n=1jcnj<+1.∪1De nition2.Sp,theringofallSchatt

6、enp-classoperators.S=p=1Sp,theringofallSchattenclassoperators.,agroup.S,theringofSchattenclassoperators.S,thegroupring.Motivations:Connes-Moscovici'shigherindextheory(1990s,Topology).M2n,acompactmanifold.D,anellipticdi erentialoperatoronM2n.Higherindex,indexD2K(S),=M.01ApproximatingK

7、0(S)usinglocally nitesimplicialhomologygroupofPF().,agroup.8F,a nitesubset.De nition3.TheRips'complexPF()isasimplicialcomplexwhosesetofverticesis1andf0;; ngspansasimplexi ij2F.Example4.=Z.F=f1g.fn0;n1gspansasimplex.n1n02F=f1g.PF()formsaline.Example5.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。