欢迎来到天天文库
浏览记录
ID:34857690
大小:1.18 MB
页数:23页
时间:2019-03-12
《高考数学一轮作业必备:课时:课题:不等式问题题型方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第119-122课时:课题:不等式问题的题型与方法课题:不等式问题的题型与方法一.复习目标:1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;矚慫润厲钐瘗睞枥庑赖。2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;聞創沟燴鐺險爱氇谴净。3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法
2、)证明不等式的有关问题;残骛楼諍锩瀨濟溆塹籟。4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..酽锕极額閉镇桧猪訣锥。二.考试要求:1.理解不等式的性质及其证明。2.掌握两个(不扩展到三个)正数的算术
3、平均数不小于它们的几何平均数的定理,并会简单的应用。3.掌握分析法、综合法、比较法证明简单的不等式。4.掌握简单不等式的解法。5.理解不等式
4、a
5、-
6、b
7、≤
8、a+b
9、≤
10、a
11、+
12、b
13、。三.教学过程:(Ⅰ)基础知识详析1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形
14、关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.彈贸摄尔霁毙攬砖卤庑。2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)-23-/23是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.謀荞抟箧飆鐸怼类蒋薔。3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将
15、不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.厦礴恳蹒骈時盡继價骚。4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,
16、将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.茕桢广鳓鯡选块网羈泪。6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.鹅娅尽損鹌惨歷茏鴛賴。7.不等式这部分知识,渗透在中学数
17、学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。籟丛妈羥为贍偾蛏练淨。8.不等式应用问题
18、体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注
此文档下载收益归作者所有