rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf

rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf

ID:34843837

大小:864.63 KB

页数:107页

时间:2019-03-12

rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第1页
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第2页
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第3页
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第4页
rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf_第5页
资源描述:

《rudin-w-solution-manual-of-principles-of-mathematical-analysis.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MATH413[513](PHILLIPS)SOLUTIONSTOHOMEWORK1Generally,asolution"issomethingthatwouldbeacceptableifturnedinintheformpresentedhere,althoughthesolutionsgivenareoftenclosetominimalinthisrespect.Asolution(sketch)"istoosketchytobeconsideredacompletesolutionif

2、turnedin;varyingamountsofdetailwouldneedtobe¯lledin.Problem1.1:Ifr2Qnf0gandx2RnQ,provethatr+x;rx62Q.Solution:Weprovethisbycontradiction.Letr2Qnf0g,andsupposethatr+x2Q.Then,usingthe¯eldpropertiesofbothRandQ,wehavex=(r+x)¡r2Q.Thusx62Qimpliesr+x62Q.Similar

3、ly,ifrx2Q,thenx=(rx)=r2Q.(Here,inadditiontothe¯eldpropertiesofRandQ,weuser6=0.)Thusx62Qimpliesrx62Q.Problem1.2:Provethatthereisnox2Qsuchthatx2=12.Solution:Weprovethisbycontradiction.Supposethereisx2Qsuchthatx2=12.Writex=minlowestterms.Thenx2=12impliesth

4、atm2=12n2.nSince3divides12n2,itfollowsthat3dividesm2.Since3isprime(andbyuniquefactorizationinZ),itfollowsthat3dividesm.Therefore32dividesm2=12n2.Since32doesnotdivide12,usingagainuniquefactorizationinZandthefactthat3isprime,itfollowsthat3dividesn.Wehavep

5、rovedthat3dividesbothmandn,contradictingtheassumptionthatthefractionmisinlowestterms.nAlternatesolution(Sketch):Ifx2Qsatis¯esx2=12,thenxisinQandsatis¯es¡¢2x22=3.Nowprovethatthereisnoy2Qsuchthaty=3byrepeatingthe2pproofthat262Q.Problem1.5:LetA½Rbenonempty

6、andboundedbelow.Set¡A=f¡a:a2Ag.Provethatinf(A)=¡sup(¡A).Solution:Firstnotethat¡Aisnonemptyandboundedabove.Indeed,Acontainssomeelementx,andthen¡x2A;moreover,Ahasalowerboundm,and¡misanupperboundfor¡A.Wenowknowthatb=sup(¡A)exists.Weshowthat¡b=inf(A).That¡b

7、isalowerboundforAisimmediatefromthefactthatbisanupperboundfor¡A.Toshowthat¡bisthegreatestlowerbound,weletc>¡bandprovethatcisnotalowerboundforA.Now¡c¡c.Then¡x2Aand¡x

8、em1.6:Letb2Rwithb>1,¯xedthroughouttheproblem.Comment:Wewillassumeknownthatthefunctionn7!bn,fromZtoR,isstrictlyincreasing,thatis,thatform;n2Z,wehavebm

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签