欢迎来到天天文库
浏览记录
ID:34841710
大小:375.50 KB
页数:8页
时间:2019-03-12
《重点全国高中数学解题思维策略一数学思维变通性》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学解题思维策略第一讲数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:矚慫润厲钐瘗睞枥庑赖。(1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。聞創沟燴鐺險爱氇谴净。任何一道数学题,都包含一定的数学条件和关系。要想解决
2、它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。残骛楼諍锩瀨濟溆塹籟。例如,求和.这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且,因此,原式等于问题很快就解决了。(2)善于联想联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。酽锕极額閉镇桧猪訣锥。例如,解方程组.这个方程指明两个数的和为
3、,这两个数的积为。由此联想到韦达定理,、是一元二次方程的两个根,所以或.可见,联想可使问题变得简单。(3)善于将问题进行转化数学家G.波利亚在《怎样解题》中说过:数学解题是命题的连续变换。8/8可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。彈贸摄尔霁毙攬砖卤庑。例如,已知,,求证、、三数中必有两个互为相反数。恰当的转化使问题变得熟悉、简单。要
4、证的结论,可以转化为:思维变通性的对立面是思维的保守性,即思维定势。思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。謀荞抟箧飆鐸怼类蒋薔。综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。要想提高思维变通性,必须作相应的思维训练。厦礴恳蹒骈時盡继價骚。二、思维训练实例(1)观察能力的训练虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。所以,必须重视观察能力的训练,使学生
5、不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。茕桢广鳓鯡选块网羈泪。例1已知都是实数,求证思路分析从题目的外表形式观察到,要证的结论的右端与平面上两点间的距离公式很相似,而xyO图1-2-1左端可看作是点到原点的距离公式。根据其特点,可采用下面巧妙而简捷的证法,这正是思维变通的体现。证明不妨设如图1-2-1所示,则在中,由三角形三边之间的关系知:当且仅当O在AB上时,等号成立。因此,思维障碍很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。学生没能从外表形式上观察到它与平面上两点间距
6、离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。因此,平时应多注意数学公式、定理的运用练习。8/8鹅娅尽損鹌惨歷茏鴛賴。例2已知,试求的最大值。解由得又当时,有最大值,最大值为思路分析要求的最大值,由已知条件很快将变为一元二次函数然后求极值点的值,联系到,这一条件,既快又准地求出最大值。上述解法观察到了隐蔽条件,体现了思维的变通性。籟丛妈羥为贍偾蛏练淨。思维障碍大部分学生的作法如下:由得当时,取最大值,最大值为这种解法由于忽略了这一条件,致使计算结果出现错误。因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条
7、件中发现其隐蔽条件,既要注意主要的已知条件,預頌圣鉉儐歲龈讶骅籴。又要注意次要条件,这样,才能正确地解题,提高思维的变通性。有些问题的观察要从相应的图像着手。例3已知二次函数满足关系,试比较与的大小。xyO2图1-2-2思路分析由已知条件可知,在与左右等距离的点的函数值相等,说明该函数的图像关于直线对称,又由渗釤呛俨匀谔鱉调硯錦。已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。解(如图1-2-2)由,知是以直线为对称轴,开口向上的抛物线它与距离越近的点,函数值越小。8/8思维障碍有些同学对比较与的大小,只想到求出它们的值。
8、而此题函数的表达式不确定无法代值,所以无法比较。出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲
此文档下载收益归作者所有