小升初奥数—排列组合问题

小升初奥数—排列组合问题

ID:34825769

大小:1.60 MB

页数:9页

时间:2019-03-11

小升初奥数—排列组合问题_第1页
小升初奥数—排列组合问题_第2页
小升初奥数—排列组合问题_第3页
小升初奥数—排列组合问题_第4页
小升初奥数—排列组合问题_第5页
资源描述:

《小升初奥数—排列组合问题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、实用标准小升初奥数—排列组合问题一、排列组合的应用【例1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人.小新、阿呆不在同一排。【解析】(1)(种)。(2)只需排其余6个人站剩下的6个位置.(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×=1440(种).(4)先排两边,再排

2、剩下的5个位置,其中两边的小新和阿呆还可以互换位置.(种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3××2=2880(种).排队问题,一般先考虑特殊情况再去全排列。【例2】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是,那么确保打开

3、保险柜至少要试几次?【解析】四个非数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。第一种中,可以组成多少个密码呢?只要考虑的位置就可以了,可以任意选择个位置中的一个,其余位置放,共有种选择;第二种中,先考虑放,有种选择,再考虑的位置,可以有种选择,剩下的位置放,共有(种)选择同样的方法,可以得出第三、四、五种都各有种选择.最后一种,与第一种的情形相似,的位置有种选择,其余位置放,共有种选择.综上所述,由加法原理,一共可以组成(个)不同的四位数,即确保能打开保险柜至少要试次.【例3】一种电子表在6时24分30秒时的显

4、示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】设A:BC是满足题意的时刻,有A为8,B、D应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有种选法,而C、E应从剩下的7个数字中选择两个不同的数字,所以有种选法,所以共有×=1260种选法。从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。【例4】名男生,名女生,全体排成一行,问下列情形各有多少种不同的排法:文档实用标准⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.【解析】⑴先排甲,个位置除了中间和两端之外的个位置都

5、可以,有种选择,剩下的个人随意排,也就是个元素全排列的问题,有(种)选择.由乘法原理,共有(种)排法.⑵甲、乙先排,有(种)排法;剩下的个人随意排,有(种)排法.由乘法原理,共有(种)排法.⑶分别把男生、女生看成一个整体进行排列,有(种)不同排列方法,再分别对男生、女生内部进行排列,分别是个元素与个元素的全排列问题,分别有(种)和(种)排法.由乘法原理,共有(种)排法.⑷先排名男生,有(种)排法,再把名女生排到个空档中,有(种)排法.由乘法原理,一共有(种)排法。【例1】一台晚会上有个演唱节目和个舞蹈节目.求:⑴当个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?⑵当要求每个舞蹈节目之

6、间至少安排个演唱节目时,一共有多少不同的安排节目的顺序?【解析】⑴先将个舞蹈节目看成个节目,与个演唱节目一起排,则是个元素全排列的问题,有(种)方法.第二步再排个舞蹈节目,也就是个舞蹈节目全排列的问题,有(种)方法.根据乘法原理,一共有(种)方法.⑵首先将个演唱节目排成一列(如下图中的“□”),是个元素全排列的问题,一共有(种)方法.×□×□×□×□×□×□×第二步,再将个舞蹈节目排在一头一尾或个演唱节目之间(即上图中“×”的位置),这相当于从个“×”中选个来排,一共有(种)方法.根据乘法原理,一共有(种)方法。【例2】⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多少个?(

7、只要求列式)⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法?⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法?⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法?⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法?⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法?【解析】⑴按顺序,有百位、十位、个位三个位置,8个数字(8个元素)取出3个往上排,有种.⑵3种职务3个位置,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。