Classification_and_Regression_Trees.pdf

Classification_and_Regression_Trees.pdf

ID:34816971

大小:3.05 MB

页数:25页

时间:2019-03-11

Classification_and_Regression_Trees.pdf_第1页
Classification_and_Regression_Trees.pdf_第2页
Classification_and_Regression_Trees.pdf_第3页
Classification_and_Regression_Trees.pdf_第4页
Classification_and_Regression_Trees.pdf_第5页
资源描述:

《Classification_and_Regression_Trees.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Classi cationandRegressionTrees36-350,DataMining6November2009Contents1PredictionTrees12RegressionTrees42.1Example:CaliforniaRealEstateAgain...............42.2RegressionTreeFitting.......................72.2.1Cross-ValidationandPruninginR.............132.3U

2、ncertaintyinRegressionTrees...................143Classi cationTrees183.1MeasuringInformation........................193.2MakingPredictions..........................203.3MeasuringError...........................203.3.1Misclassi cationRate...................

3、.203.3.2AverageLoss.........................213.3.3LikelihoodandCross-Entropy................213.3.4Neyman-PearsonApproach.................234FurtherReading245Exercises24Reading:PrinciplesofDataMining,sections10.5and5.2(inthatorder);Berk,chapter3Havingbuil

4、tupincreasinglycomplicatedmodelsforregression,I'llnowswitchgearsandintroduceaclassofnonlinearpredictivemodelwhichat rstseemstoosimpletopossiblework,namelypredictiontrees.Thesehavetwovarieties,regressiontreesandclassi cationtrees.1PredictionTreesThebasicide

5、aisverysimple.WewanttopredictaresponseorclassYfrominputsX1;X2;:::Xp.Wedothisbygrowingabinarytree.Ateachinternal1nodeinthetree,weapplyatesttooneoftheinputs,sayXi.Dependingontheoutcomeofthetest,wegotoeithertheleftortherightsub-branchofthetree.Eventuallywecom

6、etoaleafnode,wherewemakeaprediction.Thispredictionaggregatesoraveragesallthetrainingdatapointswhichreachthatleaf.Figure1shouldhelpclarifythis.Whydothis?Predictorslikelinearorpolynomialregressionareglobalmodels,whereasinglepredictiveformulaissupposedtoholdo

7、vertheentiredataspace.Whenthedatahaslotsoffeatureswhichinteractincomplicated,nonlinearways,assemblingasingleglobalmodelcanbeverydicult,andhope-lesslyconfusingwhenyoudosucceed.Someofthenon-parametricsmootherstryto tmodelslocallyandthenpastethemtogether,but

8、againtheycanbehardtointerpret.(Additivemodelsareatleastprettyeasytograsp.)Analternativeapproachtononlinearregressionistosub-divide,orparti-tion,thespaceintosmallerregions,wheretheinteractionsaremoremanage-abl

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签