欢迎来到天天文库
浏览记录
ID:34804397
大小:87.93 KB
页数:6页
时间:2019-03-11
《测评附标准答案三》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、小题自测卷(四)1.D[解析]函数y=2sin2x+的周期为=π,将函数y=2sin2x+的图像向右平移个周期,即平移个单位,所得图像对应的函数为y=2sin2x-+=2sin2x-.2.C[解析]由余弦定理得a2=b2+c2-2bccosA,所以22=b2+(2)2-2×b×2×,即b2-6b+8=0,k∈Z,解得b=2或b=4.因为b2、[解析]由图知=-=1,所以T=2,即=2,所以ω=±π.酽锕极額閉镇桧猪訣锥。因为函数f(x)的图像过点,彈贸摄尔霁毙攬砖卤庑。所以当ω=π时,+φ=+2kπ,k∈Z,解得φ=+2kπ,k∈Z;当ω=-π时,+φ=-+2kπ,k∈Z,解得φ=-+2kπ,k∈Z.所以f(x)=cos,由2kπ<πx+<π+2kπ,k∈Z,解得2k-3、-=+sinωx-=sinωx-cosωx=sinωx-.茕桢广鳓鯡选块网羈泪。因为函数f(x)在区间(π,2π)内没有零点,所以>2π-π,即>π,所以0<ω<1.当x∈(π,2π)时,ωx-∈.若函数f(x)在区间(π,2π)内有零点,则ωπ-4、角,且sinθ+=>0,所以θ+为第一象限角,所以cosθ+==,所以tanθ-=tanθ+-=-cotθ+=-=-.渗釤呛俨匀谔鱉调硯錦。方法二:由sinθ+=,得sinθ+cosθ=,两边分别平方得2sinθcosθ=-,所以(sinθ-cosθ)2=1-2sinθcosθ=.因为θ是第四象限角,所以sinθ-cosθ=-,所以tanθ-====-.铙誅卧泻噦圣骋贶頂廡。10.100[解析]依题意,在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,即=,所以BC=300.在△BCD中,∠CBD=30°,CD=BCtan∠CBD=35、00·tan30°=100.擁締凤袜备訊顎轮烂蔷。11.D[解析]由cos(2π-α)=得cosα=,因为α∈,所以sinα<0,所以sinα=-=-,所以sin2α=2sinαcosα=-.贓熱俣阃歲匱阊邺镓騷。12.A[解析]由余弦定理得a2=b2+c2-2bccosA,即4=b2+2-2×b,整理得b2+b-2=0,得b=1(舍去b=-2).坛摶乡囂忏蒌鍥铃氈淚。13.D[解析]平移后得到的图像对应的函数解析式为y=cos=cos=-sin3x.故选D.蜡變黲癟報伥铉锚鈰赘。14.D[解析]f(x)=sinωx-cosωx=sin,则函数f(x)的最小正周期T==π,所以ω6、=2,所以f(x)=·sin.显然选项A错误,验证知选项B,C错误,选项D正确.買鲷鴯譖昙膚遙闫撷凄。15.C[解析]由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sin(B+C)=0,即2sinAcosB+sinA=0,因为sinA≠0,所以cosB=-,得B=.綾镝鯛駕櫬鹕踪韦辚糴。16.A[解析]依题意得,∠BAC=70°-40°=30°,∠ACB=180°-30°-40°-65°=45°,AB=40×=20(海里).在△ABC中,由正弦定理得=,则BC=10海里.驅踬髏彦浃绥譎饴憂锦。17.A[解析]因为a=b,所以A=B,所以7、2A+C=π,所以由=-2cosB得-2cosB=0,即cosB=,所以B=,所以f(B)=f=sin+coscos+2-=+2-=2.猫虿驢绘燈鮒诛髅貺庑。18.C[解析]由题意知,函数的周期为60,∴=.锹籁饗迳琐筆襖鸥娅薔。设函数解析式为y=sin(因为秒针是顺时针走动,所以ω<0).構氽頑黉碩饨荠龈话骛。∵初始位置为P0,∴t=0时,y=,輒峄陽檉簖疖網儂號泶。∴sinφ=,∴φ可取,∴函数解析式可为y=sin.故选C.尧侧閆繭絳闕绚勵蜆贅。19.[解析]当x∈[0,π]
2、[解析]由图知=-=1,所以T=2,即=2,所以ω=±π.酽锕极額閉镇桧猪訣锥。因为函数f(x)的图像过点,彈贸摄尔霁毙攬砖卤庑。所以当ω=π时,+φ=+2kπ,k∈Z,解得φ=+2kπ,k∈Z;当ω=-π时,+φ=-+2kπ,k∈Z,解得φ=-+2kπ,k∈Z.所以f(x)=cos,由2kπ<πx+<π+2kπ,k∈Z,解得2k-3、-=+sinωx-=sinωx-cosωx=sinωx-.茕桢广鳓鯡选块网羈泪。因为函数f(x)在区间(π,2π)内没有零点,所以>2π-π,即>π,所以0<ω<1.当x∈(π,2π)时,ωx-∈.若函数f(x)在区间(π,2π)内有零点,则ωπ-4、角,且sinθ+=>0,所以θ+为第一象限角,所以cosθ+==,所以tanθ-=tanθ+-=-cotθ+=-=-.渗釤呛俨匀谔鱉调硯錦。方法二:由sinθ+=,得sinθ+cosθ=,两边分别平方得2sinθcosθ=-,所以(sinθ-cosθ)2=1-2sinθcosθ=.因为θ是第四象限角,所以sinθ-cosθ=-,所以tanθ-====-.铙誅卧泻噦圣骋贶頂廡。10.100[解析]依题意,在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,即=,所以BC=300.在△BCD中,∠CBD=30°,CD=BCtan∠CBD=35、00·tan30°=100.擁締凤袜备訊顎轮烂蔷。11.D[解析]由cos(2π-α)=得cosα=,因为α∈,所以sinα<0,所以sinα=-=-,所以sin2α=2sinαcosα=-.贓熱俣阃歲匱阊邺镓騷。12.A[解析]由余弦定理得a2=b2+c2-2bccosA,即4=b2+2-2×b,整理得b2+b-2=0,得b=1(舍去b=-2).坛摶乡囂忏蒌鍥铃氈淚。13.D[解析]平移后得到的图像对应的函数解析式为y=cos=cos=-sin3x.故选D.蜡變黲癟報伥铉锚鈰赘。14.D[解析]f(x)=sinωx-cosωx=sin,则函数f(x)的最小正周期T==π,所以ω6、=2,所以f(x)=·sin.显然选项A错误,验证知选项B,C错误,选项D正确.買鲷鴯譖昙膚遙闫撷凄。15.C[解析]由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sin(B+C)=0,即2sinAcosB+sinA=0,因为sinA≠0,所以cosB=-,得B=.綾镝鯛駕櫬鹕踪韦辚糴。16.A[解析]依题意得,∠BAC=70°-40°=30°,∠ACB=180°-30°-40°-65°=45°,AB=40×=20(海里).在△ABC中,由正弦定理得=,则BC=10海里.驅踬髏彦浃绥譎饴憂锦。17.A[解析]因为a=b,所以A=B,所以7、2A+C=π,所以由=-2cosB得-2cosB=0,即cosB=,所以B=,所以f(B)=f=sin+coscos+2-=+2-=2.猫虿驢绘燈鮒诛髅貺庑。18.C[解析]由题意知,函数的周期为60,∴=.锹籁饗迳琐筆襖鸥娅薔。设函数解析式为y=sin(因为秒针是顺时针走动,所以ω<0).構氽頑黉碩饨荠龈话骛。∵初始位置为P0,∴t=0时,y=,輒峄陽檉簖疖網儂號泶。∴sinφ=,∴φ可取,∴函数解析式可为y=sin.故选C.尧侧閆繭絳闕绚勵蜆贅。19.[解析]当x∈[0,π]
3、-=+sinωx-=sinωx-cosωx=sinωx-.茕桢广鳓鯡选块网羈泪。因为函数f(x)在区间(π,2π)内没有零点,所以>2π-π,即>π,所以0<ω<1.当x∈(π,2π)时,ωx-∈.若函数f(x)在区间(π,2π)内有零点,则ωπ-4、角,且sinθ+=>0,所以θ+为第一象限角,所以cosθ+==,所以tanθ-=tanθ+-=-cotθ+=-=-.渗釤呛俨匀谔鱉调硯錦。方法二:由sinθ+=,得sinθ+cosθ=,两边分别平方得2sinθcosθ=-,所以(sinθ-cosθ)2=1-2sinθcosθ=.因为θ是第四象限角,所以sinθ-cosθ=-,所以tanθ-====-.铙誅卧泻噦圣骋贶頂廡。10.100[解析]依题意,在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,即=,所以BC=300.在△BCD中,∠CBD=30°,CD=BCtan∠CBD=35、00·tan30°=100.擁締凤袜备訊顎轮烂蔷。11.D[解析]由cos(2π-α)=得cosα=,因为α∈,所以sinα<0,所以sinα=-=-,所以sin2α=2sinαcosα=-.贓熱俣阃歲匱阊邺镓騷。12.A[解析]由余弦定理得a2=b2+c2-2bccosA,即4=b2+2-2×b,整理得b2+b-2=0,得b=1(舍去b=-2).坛摶乡囂忏蒌鍥铃氈淚。13.D[解析]平移后得到的图像对应的函数解析式为y=cos=cos=-sin3x.故选D.蜡變黲癟報伥铉锚鈰赘。14.D[解析]f(x)=sinωx-cosωx=sin,则函数f(x)的最小正周期T==π,所以ω6、=2,所以f(x)=·sin.显然选项A错误,验证知选项B,C错误,选项D正确.買鲷鴯譖昙膚遙闫撷凄。15.C[解析]由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sin(B+C)=0,即2sinAcosB+sinA=0,因为sinA≠0,所以cosB=-,得B=.綾镝鯛駕櫬鹕踪韦辚糴。16.A[解析]依题意得,∠BAC=70°-40°=30°,∠ACB=180°-30°-40°-65°=45°,AB=40×=20(海里).在△ABC中,由正弦定理得=,则BC=10海里.驅踬髏彦浃绥譎饴憂锦。17.A[解析]因为a=b,所以A=B,所以7、2A+C=π,所以由=-2cosB得-2cosB=0,即cosB=,所以B=,所以f(B)=f=sin+coscos+2-=+2-=2.猫虿驢绘燈鮒诛髅貺庑。18.C[解析]由题意知,函数的周期为60,∴=.锹籁饗迳琐筆襖鸥娅薔。设函数解析式为y=sin(因为秒针是顺时针走动,所以ω<0).構氽頑黉碩饨荠龈话骛。∵初始位置为P0,∴t=0时,y=,輒峄陽檉簖疖網儂號泶。∴sinφ=,∴φ可取,∴函数解析式可为y=sin.故选C.尧侧閆繭絳闕绚勵蜆贅。19.[解析]当x∈[0,π]
4、角,且sinθ+=>0,所以θ+为第一象限角,所以cosθ+==,所以tanθ-=tanθ+-=-cotθ+=-=-.渗釤呛俨匀谔鱉调硯錦。方法二:由sinθ+=,得sinθ+cosθ=,两边分别平方得2sinθcosθ=-,所以(sinθ-cosθ)2=1-2sinθcosθ=.因为θ是第四象限角,所以sinθ-cosθ=-,所以tanθ-====-.铙誅卧泻噦圣骋贶頂廡。10.100[解析]依题意,在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,即=,所以BC=300.在△BCD中,∠CBD=30°,CD=BCtan∠CBD=3
5、00·tan30°=100.擁締凤袜备訊顎轮烂蔷。11.D[解析]由cos(2π-α)=得cosα=,因为α∈,所以sinα<0,所以sinα=-=-,所以sin2α=2sinαcosα=-.贓熱俣阃歲匱阊邺镓騷。12.A[解析]由余弦定理得a2=b2+c2-2bccosA,即4=b2+2-2×b,整理得b2+b-2=0,得b=1(舍去b=-2).坛摶乡囂忏蒌鍥铃氈淚。13.D[解析]平移后得到的图像对应的函数解析式为y=cos=cos=-sin3x.故选D.蜡變黲癟報伥铉锚鈰赘。14.D[解析]f(x)=sinωx-cosωx=sin,则函数f(x)的最小正周期T==π,所以ω
6、=2,所以f(x)=·sin.显然选项A错误,验证知选项B,C错误,选项D正确.買鲷鴯譖昙膚遙闫撷凄。15.C[解析]由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sin(B+C)=0,即2sinAcosB+sinA=0,因为sinA≠0,所以cosB=-,得B=.綾镝鯛駕櫬鹕踪韦辚糴。16.A[解析]依题意得,∠BAC=70°-40°=30°,∠ACB=180°-30°-40°-65°=45°,AB=40×=20(海里).在△ABC中,由正弦定理得=,则BC=10海里.驅踬髏彦浃绥譎饴憂锦。17.A[解析]因为a=b,所以A=B,所以
7、2A+C=π,所以由=-2cosB得-2cosB=0,即cosB=,所以B=,所以f(B)=f=sin+coscos+2-=+2-=2.猫虿驢绘燈鮒诛髅貺庑。18.C[解析]由题意知,函数的周期为60,∴=.锹籁饗迳琐筆襖鸥娅薔。设函数解析式为y=sin(因为秒针是顺时针走动,所以ω<0).構氽頑黉碩饨荠龈话骛。∵初始位置为P0,∴t=0时,y=,輒峄陽檉簖疖網儂號泶。∴sinφ=,∴φ可取,∴函数解析式可为y=sin.故选C.尧侧閆繭絳闕绚勵蜆贅。19.[解析]当x∈[0,π]
此文档下载收益归作者所有