基于支持向量机的稀土萃取过程组分含量软测量研究

基于支持向量机的稀土萃取过程组分含量软测量研究

ID:34769262

大小:2.29 MB

页数:82页

时间:2019-03-10

基于支持向量机的稀土萃取过程组分含量软测量研究_第1页
基于支持向量机的稀土萃取过程组分含量软测量研究_第2页
基于支持向量机的稀土萃取过程组分含量软测量研究_第3页
基于支持向量机的稀土萃取过程组分含量软测量研究_第4页
基于支持向量机的稀土萃取过程组分含量软测量研究_第5页
资源描述:

《基于支持向量机的稀土萃取过程组分含量软测量研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、华东交通大学硕士学位论文基于支持向量机的稀土萃取过程组分含量软测量研究姓名:陆荣秀申请学位级别:硕士专业:交通信息工程及控制指导教师:杨辉20070609摘要基于支持向量机的稀土萃取过程组分含量软测量研究稀土串级萃取分离过程具有强非线性、时变、大滞后等特点,元素的组分含量难以在线测量.目前实现对稀土萃取分离过程组份含量在线检测的方法普遍存在装置价格高,结构复杂,系统连续运行可靠性不高,维护保养困难等缺点.由于软测量技术具有精确、可靠、经济和动态响应迅速等特点,软测量技术已成为解决稀土萃取过程组分含量在线估计的新途径.实现组分含量软测量的关键是建立组分含量软测量模型

2、.而支持向量机(SepportVectorMachines,简称SVM)是根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的推广能力,已被广泛地用于非线性系统建模。它是将实际问题通过非线性变换映射到高维的特征空间,然后在这个高维空间中求取最优分类超平面或进行函数拟合.其算法复杂度与样本维数无关,可得到有限样本信息下的全局最优解,解决了在神经网络方法中无法避免的局部极值问题.本文针对稀土萃取过程组分含量难以在线检测的难题,系统开展支持向量机技术在稀土萃取过程组分含量软测量及其应用验证研究.主要内容如下:1、简述稀土萃取分离的过程检测及控制的现

3、状,针对缀分含量难以实现在线估计的问题,提出用SVM方法建立稀土萃取组分含量软测量模型的思想,并回顾了SVM技术的原理及其研究现状.2、简要描述稀土串级萃取分离过程原理及其工艺流程,在对稀土萃取分离过程进行机理分析的基础上,分析影响元素组分含量的因素,采用SVM技术建立软测量模型实现稀土分离过程组分含量在线估计.3、针对支持向量机软测量模型的运算速度慢、泛化能力不强等不足,采用了三种方法(混合核函数、最小二乘支持向量机、增量学习法)对上述模型进行改进,并进行仿真试验验证.仿真结果表明,将增量学习法与最小二乘支持向量机方法结合的改进方法能根据误差要求调整训练目标,训

4、练效率高,比较适合用于组分含量在线估计。研究结果对稀土萃取过程组分含量在线测量具有重要意义。关键词:稀土萃取,软测量,支持向量机,混合核函数,最小二乘支持向量机,增量学习SOFr-SENSORMETHODOFCOMPONENTCONTENTINRAREEARTHSEPARArIONPROCESSBASEDONSVMABSTRACTTherare-earthseparationprocessbycountercurrcnta【打ac6∞ischaracterizedofnon.empty,time-variantproperties,andseverelag.Int

5、heprocessofmonitoringandcontrollingtherare-earthsepalationbycountercurrentextraction,theon-lineinformationofcomponentcontentisinaccessible.Atpresent,theon·lineexaminationmethodsofrealizingthemre圮arthseparationprocessbycountcrcmTentextractionhavetheshortcomingsofhighinstallmentpri=andc

6、omplexsuuctureandlowreliabilityofthesystemcontinuousrunninganddi伍celtymaintenanceandSOOILBecauseithasprecision,reliablation,economyandtherapiddynamicresponseandothercharacters,soft-sensormcghodturnsintoanewapproachtorealizetheOn·lineestimationofcomponentcontent.Butmodelingofsoft-senso

7、risthecoreofsoft-Sensorrea[izafioiLThekeytorealizesoft-sensoristobuildthesoft-sensormodelofcomponentoontenLButSupportv“lofm硝血in鹤(i.c.SVM)istoseekbestco=promjscaccordingtothelimitedsampleinformationinbetweenthemodelcomplexityandlearningcapability,obtainthebestgeneralizationability.Itha

8、salre

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。