资源描述:
《2D sparse signal recovery via 2D orthogonal matching pursuit .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、SCIENCECHINAInformationSciences.RESEARCHPAPER.April2012Vol.55No.4:889–897doi:10.1007/s11432-012-4551-52Dsparsesignalrecoveryvia2DorthogonalmatchingpursuitFANGYong1∗,WUJiaJi2&HUANGBorMin31CollegeofInformationEngineering,NorthwestA&FUniversity,Yangling712100,China;2KeyLabora
2、toryofIntelligentPerceptionandImageUnderstandingofMinistryofEducationofChina,XidianUniversity,Xi’an710071,China;3SpaceScienceandEngineeringCenter,UniversityofWisconsin-Madison,Madison,WI53706,USAReceivedJune10,2011;acceptedOctober4,2011AbstractRecoveryalgorithmsplayakeyrol
3、eincompressivesampling(CS).MostofcurrentCSrecoveryalgo-rithmsareoriginallydesignedforone-dimensional(1D)signal,whilemanypracticalsignalsaretwo-dimensional(2D).Byutilizing2Dseparablesampling,2Dsignalrecoveryproblemcanbeconvertedinto1Dsignalrecoveryproblemsothatordinary1Drec
4、overyalgorithms,e.g.orthogonalmatchingpursuit(OMP),canbeapplieddirectly.However,evenwith2Dseparablesampling,thememoryusageandcomplexityatthedecoderarestillhigh.Thispaperdevelopsanovelrecoveryalgorithmcalled2D-OMP,whichisanextensionof1D-OMP.Inthe2D-OMP,eachatominthedictiona
5、ryisamatrix.Ateachiteration,thedecoderprojectsthesamplematrixonto2Datomstoselectthebestmatchedatom,andthenrenewstheweightsforallthealreadyselectedatomsviatheleastsquares.Weshowthat2D-OMPisinfactequivalentto1D-OMP,butitreducesrecoverycomplexityandmemoryusagesignificantly.Wha
6、t’smoreimportant,byutilizingthesamemethodologyusedinthispaper,onecanevenobtainhigherdimensionalOMP(say3D-OMP,etc.)withease.Keywordscompressivesampling,2Dsparsesignal,recoveryalgorithm,orthogonalmatchingpursuitCitationFangY,WuJJ,HuangBM.2Dsparsesignalrecoveryvia2Dorthogonal
7、matchingpursuit.SciChinaInfSci,2012,55:889–897,doi:10.1007/s11432-012-4551-51IntroductionLetx∈Rnbeaone-dimensional(1D)signalandΨ∈Rn×nanorthonormaltransformmatrix,whereRisthesetofrealnumbers.Ifx=Ψzandthereareonlyknspikes(nonzeroentries)inz,wesaythatxisk-sparseinΨdomain.Wes
8、amplexbyΦ∈Rm×n(k