资源描述:
《同济第六版《高等数学》教案word版-第07章空间解析几何和向量代数》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第七章空间解析几何与向量代数教学目的:1、理解空间直角坐标系,理解向量的概念及其表示。2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。4、掌握平面方程和直线方程及其求法。5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6、会求点到直线以及点到平面的距离。7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的
2、柱面方程。8、了解空间曲线的参数方程和一般方程。9、了解空间曲线在坐标平面上的投影,并会求其方程。教学重点:1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算;2、两个向量垂直和平行的条件;3、平面方程和直线方程;4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件;5、点到直线以及点到平面的距离;6、常用二次曲面的方程及其图形;7、旋转曲面及母线平行于坐标轴的柱面方程;8、空间曲线的参数方程和一般方程。教学难点:1、向量积的向量运算及坐标运算;2、平面方程和直线方程及其求法;3、点到直线的距离;4、二次曲面图形;5、旋转曲面的方程
3、;§7.1向量及其线性运算一、向量概念向量:在研究力学、物理学以及其他应用科学时,常会遇到这样一类量,它们既有大小,又有方向.例如力、力矩、位移、速度、加速度等,这一类量叫做向量.在数学上,用一条有方向的线段(称为有向线段)来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.向量的符号:以A为起点、B为终点的有向线段所表示的向量记作.向量可用粗体字母表示,也可用上加箭头书写体字母表示,例如,a、r、v、F或、、、.自由向量:由于一切向量的共性是它们都有大小和方向,所以在数学上我们只研究与起点无关的向量,并称这种向量为自由向量,简称向量.
4、因此,如果向量a和b的大小相等,且方向相同,则说向量a和b是相等的,记为a=b.相等的向量经过平移后可以完全重合.向量的模:向量的大小叫做向量的模.向量a、、的模分别记为
5、a
6、、、.单位向量:模等于1的向量叫做单位向量.零向量:模等于0的向量叫做零向量,记作0或.零向量的起点与终点重合,它的方向可以看作是任意的.向量的平行:两个非零向量如果它们的方向相同或相反,就称这两个向量平行.向量a与b平行,记作a//b.零向量认为是与任何向量都平行.当两个平行向量的起点放在同一点时,它们的终点和公共的起点在一条直线上.因此,两向量平行又称两向量共线.类似还有共面的概
7、念.设有k(k³3)个向量,当把它们的起点放在同一点时,如果k个终点和公共起点在一个平面上,就称这k个向量共面.二、向量的线性运算1.向量的加法向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b.三角形法则:上述作出两向量之和的方法叫做向量加法的三角形法则.平行四边形法则:当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b.ABCABCD向量的加法的运算规律:(1)交换律a+b=b+a;(2
8、)结合律(a+b)+c=a+(b+c).由于向量的加法符合交换律与结合律,故n个向量a1,a2,×××,an(n³3)相加可写成a1+a2+×××+an,并按向量相加的三角形法则,可得n个向量相加的法则如下:使前一向量的终点作为次一向量的起点,相继作向量a1,a2,×××,an,再以第一向量的起点为起点,最后一向量的终点为终点作一向量,这个向量即为所求的和.负向量:设a为一向量,与a的模相同而方向相反的向量叫做a的负向量,记为-a.向量的减法:我们规定两个向量b与a的差为b-a=b+(-a).即把向量-a加到向量b上,便得b与a的差b-a.特别地,当b=a
9、时,有a-a=a+(-a)=0.---显然,任给向量及点O,有,因此,若把向量a与b移到同一起点O,则从a的终点A向b的终点B所引向量便是向量b与a的差b-a.三角不等式:由三角形两边之和大于第三边的原理,有
10、a+b
11、£
12、a
13、+
14、b
15、及
16、a-b
17、£
18、a
19、+
20、b
21、,其中等号在b与a同向或反向时成立.2.向量与数的乘法向量与数的乘法的定义:向量a与实数l的乘积记作la,规定la是一个向量,它的模
22、la
23、=
24、l
25、
26、a
27、,它的方向当l>0时与a相同,当l<0时与a相反.当l=0时,
28、la
29、=0,即la为零向量,这时它的方向可以是任意的.特别地,当l=±1时,有1a
30、=a,(-1)a=-a.运算规律:(1)结合律l(ma)=m(la