欢迎来到天天文库
浏览记录
ID:34692323
大小:382.00 KB
页数:9页
时间:2019-03-09
《实验二时域采样和频域采样》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。二、实验原理及方法1、时域采样定理的要点:a)对模拟信号以间隔T进行时域等间隔理想采样,形成的采样信号的频谱是原模拟信号频谱以采样角频率()为周期进行周期延拓。公式为:b)采样频率必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另
2、外一个公式,以便用计算机上进行实验。理想采样信号和模拟信号之间的关系为:对上式进行傅立叶变换,得到:在上式的积分号内只有当时,才有非零值,因此:上式中,在数值上=,再将代入,得到:上式的右边就是序列的傅立叶变换,即上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用代替即可。2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N点,得到则N点IDFT[]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:b)由上式可知,频域采样点数N必须大于等于时
3、域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[]得到的序列就是原序列x(n),即=x(n)。如果N>M,比原序列尾部多N-M个零点;如果N4、的验证给定模拟信号,式中A=444.128,=50π,=50πrad/s,它的幅频特性曲线如图2.1图2.1的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。按照的幅频特性曲线,选取三种采样频率,即=1kHz,300Hz,200Hz。观测时间选。为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用,,表示。因为采样频率不同,得到的,,的长度不同,长度(点数)用公式计算。选FFT的变换点数为M=64,序列长度不够64的尾部加零。X(k)=FFT[x(n)],k=0,1,2,3,-----5、,M-1式中k代表的频率为。要求:编写实验程序,计算、和的幅度特性,并绘图显示析频谱混叠失真。Matlab源代码:A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;Tp=50/1000;F1=1000;F2=300;F3=200;%观察时间Tp=50msT1=1/F1;T2=1/F2;T3=1/F3;%不同的采样频率n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1;%产生不同的长度区间n1,n2,n3x1=A*exp(-a*n1*T1).*sin(w0*n1*T1);%产生采6、样序列x1(n)x2=A*exp(-a*n2*T2).*sin(w0*n2*T2);%产生采样序列x2(n)x3=A*exp(-a*n3*T3).*sin(w0*n3*T3);%产生采样序列x3(n)f1=fft(x1,length(n1));%采样序列x1(n)的FFT变换f2=fft(x2,length(n2));%采样序列x2(n)的FFT变换f3=fft(x3,length(n3));%采样序列x3(n)的FFT变换k1=0:length(f1)-1;fk1=k1/Tp;%x1(n)的频谱的横坐标的取值k2=0:length(f27、)-1;fk2=k2/Tp;%x2(n)的频谱的横坐标的取值k3=0:length(f3)-1;fk3=k3/Tp;%x3(n)的频谱的横坐标的取值subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)');subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)');subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs8、=200Hz');xlabel('n');ylabel('x3(n)');subplot(3,2,2)plot(fk1,abs(f1))title('(a)FT[xa(nT)],Fs=1000
4、的验证给定模拟信号,式中A=444.128,=50π,=50πrad/s,它的幅频特性曲线如图2.1图2.1的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。按照的幅频特性曲线,选取三种采样频率,即=1kHz,300Hz,200Hz。观测时间选。为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用,,表示。因为采样频率不同,得到的,,的长度不同,长度(点数)用公式计算。选FFT的变换点数为M=64,序列长度不够64的尾部加零。X(k)=FFT[x(n)],k=0,1,2,3,-----
5、,M-1式中k代表的频率为。要求:编写实验程序,计算、和的幅度特性,并绘图显示析频谱混叠失真。Matlab源代码:A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;Tp=50/1000;F1=1000;F2=300;F3=200;%观察时间Tp=50msT1=1/F1;T2=1/F2;T3=1/F3;%不同的采样频率n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1;%产生不同的长度区间n1,n2,n3x1=A*exp(-a*n1*T1).*sin(w0*n1*T1);%产生采
6、样序列x1(n)x2=A*exp(-a*n2*T2).*sin(w0*n2*T2);%产生采样序列x2(n)x3=A*exp(-a*n3*T3).*sin(w0*n3*T3);%产生采样序列x3(n)f1=fft(x1,length(n1));%采样序列x1(n)的FFT变换f2=fft(x2,length(n2));%采样序列x2(n)的FFT变换f3=fft(x3,length(n3));%采样序列x3(n)的FFT变换k1=0:length(f1)-1;fk1=k1/Tp;%x1(n)的频谱的横坐标的取值k2=0:length(f2
7、)-1;fk2=k2/Tp;%x2(n)的频谱的横坐标的取值k3=0:length(f3)-1;fk3=k3/Tp;%x3(n)的频谱的横坐标的取值subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)');subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)');subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs
8、=200Hz');xlabel('n');ylabel('x3(n)');subplot(3,2,2)plot(fk1,abs(f1))title('(a)FT[xa(nT)],Fs=1000
此文档下载收益归作者所有