欢迎来到天天文库
浏览记录
ID:34661664
大小:990.23 KB
页数:10页
时间:2019-03-08
《spss进行主成分分析报告报告材料及得分分析报告报告材料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、标准实用文案spss进行主成分分析及得分分析1将数据录入spss1.2数据标准化:打开数据后选择分析→描述统计→描述,对数据进行标准化,选中将标准化得分另存为变量:2.3进行主成分分析:选择分析→降维→因子分析,文档标准实用文案1.4设置描述性,抽取,得分和选项:文档标准实用文案1.5查看主成分分析和分析:相关矩阵表明,各项指标之间具有强相关性。比如指标GDP总量与财政收入、固定资产投资总额、第二产业增加值、第三产业增加值、工业增加值的相关系数较大。这说明他们之间指标信息之间存在重叠,适合采用主成分分析法。(下表非完整呈现)文档标准实用文案1.6由Tota
2、l Variance Explained(主成分特征根和贡献率)可知,特征根λ1=9.092,特征根λ2=1.150前两个主成分的累计方差贡献率达93.107%,即涵盖了大部分信息。这表明前两个主成分能够代表最初的11个指标来分析河南各个城市经济综合实力的发展水平,故提取前两个指标即可。主成分,分别记作F1、F2。2.7文档标准实用文案指标X1、X2、X3、X4、X5、X6、X7、X8、X9、X10在第一主成分上有较高载荷,相关性强。第一主成分集中反映了总体的经济总量。X11在第二主成分上有较高载荷,相关性强。第二主成分反映了人均的经济量水平。但是要注意:
3、这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:各自主成分载荷向量除以各自主成分特征值的算术平方根。文档标准实用文案1.8成分得分系数矩阵(因子得分系数)列出了强两个特征根对应的特征向量,即各主要成分解析表达式中的标准化变量的系数向量。故各主要成分解析表达式分别为:F1=0.32ZX11+0.33ZX12+0.31ZX13+0.31ZX14+0.32ZX15+0.32ZX16+0.32ZX17+0.32ZX18+0.32ZX19+0.21ZX110+0.15ZX111F2=8.46ZX21+0.02ZX
4、22-0.02ZX23-0.20ZX24-0.23Z25-0.04ZX26-0.15ZX27-0.02ZX28+0.10ZX29+0.47ZX210+0.78ZX2112.9文档标准实用文案主成分的得分是相应的因子得分乘以相应的方差的算术平方根。即:主成分1得分=因子1得分乘以9.092的算术平方根 主成分2得分=因子2得分乘以1.150的算术平方根例如郑州:主成分因子=FAC1_1*9.092的算术平方根=3.59386*9.092的算术平方根=10.83,将各指标的标准化数据带入个主成分解析表达式中,分别计算出2个主成分得分(F1、F2),再以个
5、主成分的贡献率为全书对主成分得分进行加权平均,即:H=(82.672*F1+10.497*F2)/93.124,求得主成分综合得分。END经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。举报作者声明:本篇经验系本人依照真实经历原创,未经许可,谢绝转载。文档标准实用文案文档标准实用文案文档标准实用文案文档
此文档下载收益归作者所有