Global Existence of Regular Solutions for theVPFP.pdf

Global Existence of Regular Solutions for theVPFP.pdf

ID:34655575

大小:100.30 KB

页数:11页

时间:2019-03-08

Global Existence of Regular Solutions for theVPFP.pdf_第1页
Global Existence of Regular Solutions for theVPFP.pdf_第2页
Global Existence of Regular Solutions for theVPFP.pdf_第3页
Global Existence of Regular Solutions for theVPFP.pdf_第4页
Global Existence of Regular Solutions for theVPFP.pdf_第5页
资源描述:

《Global Existence of Regular Solutions for theVPFP.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JournalofMathematicalAnalysisandApplications263,626–636(2001)doi:10.1006/jmaa.2001.7640,availableonlineathttp://www.idealibrary.comonGlobalExistenceofRegularSolutionsfortheVlasov–Poisson–Fokker–PlanckSystemKosukeOnoDepartmentofMathematicalandNaturalSciences,Universit

2、yofTokushima,Tokushima770-8502,JapanE-mail:ono@ias.tokushima-u.ac.jpSubmittedbyMariaClaraNucciReceivedAugust23,2000WestudytheglobalexistenceanduniquenessofregularsolutionstotheCauchyproblemfortheVlasov–Poisson–Fokker–Plancksystem.Twoexistencetheoremsforregularsolutio

3、nsaregivenunderslightlydifferentinitialconditions.OneofthemcompletelyincludestheresultsofP.Degond(1986,Ann.Sci.EcoleNorm.Sup.19,519–542).ã2001AcademicPressKeyWords:kinetictheory;Vlasovplasmaphysics;Vlasov–Poisson–Fokker–Plancksystem;regularity.1.INTRODUCTIONPlasmamea

4、nscompletelyionizedgases.TheVlasov–Poisson–Fokker–Plancksystem,weoftensayVPFPforshort,appearsinVlasovplasmaphysicsandstemsfromtheLiouvilleequationcoupledwiththePoissonequationfordeterminingtheself-consistentelectrostaticorgravitationalforces(see[7,11]).Inthispaper,we

5、considertheglobalexistenceanduniquenessofreg-ularsolutionstotheCauchyproblemfortheVPFPsystem.Letfxvtdescribethemicroscopicdensityofparticleslocatedatpositionx∈Nwithvelocityv∈Nattimet>0.Then,theVPFPsystemcanbewrittenas∂tf+v·∇xf+E·∇vf−vf=0(1.1)forf=fxvtxv

6、∈N×Nt>0,γxExt=∗fxvtdv(1.2)SN−1xN6260022-247X/01$35.00Copyrightã2001byAcademicPressAllrightsofreproductioninanyformreserved.globalexistenceofsolutions627withinitialdatafxv0=φxvwhere∇x=∂x1∂xN∇v=∂v1∂vNvistheLaplacianinthevvariable,γ=±1

7、SN−1isN−1-dimensionalvolumeoftheN-dimensionalunitsphere,andthesymbol∗istheconvolutioninthexvariable.Extistheforcefield(theelectricfield)actingontheparticle.Letρxtdescribethemacroscopicdensityofparticleslocatedatposi-tionx∈Nattimet>0;thatis,ρxt=fxvtdv

8、Equation(1.2)canbewrittenalternativelyasthePoissonequationE=−∇Uwith−U=γρ.Then,weseeUxt=2−N−1cx2−N∗ρxtxx0withc0=γ/SN−1.Thesi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。