资源描述:
《lawriech02 - Chapter 2 - Geometry》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Chapter2GeometryOurtouroftheoreticalphysicsbeginswithgeometry,andtherearetworeasonsforthis.Oneisthattheframeworkofspaceandtimeprovides,asitwere,thestageuponwhichphysicaleventsareplayedout,anditwillbehelpfultogainaclearideaofwhatthisstagelookslikebeforeintroducingthecast.Asamatteroffact,thegeometry
2、ofspaceandtimeitselfplaysanactiveroleinthosephysicalprocessesthatinvolvegravitation(andperhaps,accordingtosomespeculativetheories,inotherprocessesaswell).Thus,ourstudyofgeometrywillculminate,inchapter4,intheaccountofgravityofferedbyEinstein’sgeneraltheoryofrelativity.Theotherreasonforbeginningwith
3、geometryisthatthemathematicalnotionswedevelopwillreappearinlatercontexts.Toalargeextent,thespecialandgeneraltheoriesofrelativityare‘negative’theories.BythisImeanthattheyconsistmoreinrelaxingincorrect,thoughplausible,assumptionsthatweareinclinedtomakeaboutthenatureofspaceandtimethaninintroducingnew
4、ones.Iproposetoexplainhowthisworksinthefollowingway.Weshallstartbyintroducingaprototypeversionofspaceandtime,calleda‘differentiablemanifold’,whichpossessesabareminimumofgeometricalproperties—forexample,thenotionoflengthisnotyetmeaningful.(Actually,itmaybenecessarytoabandoneventheseminimalpropertie
5、sif,forexample,wewantageometrythatisfullycompatiblewithquantumtheoryandIshalltouchbrieflyonthisinchapter15.)Inordertoarriveatastructurethatmorecloselyresemblesspaceandtimeasweknowthem,wethenhavetoendowthemanifoldwithadditionalproperties,knownasan‘affineconnection’anda‘metric’.Twopointsthenemerge:firs
6、t,thecommon-sensenotionsofEuclideangeometrycorrespondtoveryspecialchoicesfortheseaffineandmetricproperties;second,otherpossiblechoicesleadtogeometricalstatesofaffairsthathaveanaturalinterpretationintermsofgravitationaleffects.Stretchingthepointslightly,itmaybesaidthat,merelybyavoidingunnecessaryass
7、umptions,weareabletoseegravitationassomethingentirelytobeexpected,ratherthanasaphenomenoninneedofexplanation.Tome,thisinsightintothewaysofnatureisimmenselysatisfying,andit6TheSpecialandGeneralTheoriesofRelativity