Stanley-hyperplane.pdf

Stanley-hyperplane.pdf

ID:34546022

大小:543.18 KB

页数:94页

时间:2019-03-07

Stanley-hyperplane.pdf_第1页
Stanley-hyperplane.pdf_第2页
Stanley-hyperplane.pdf_第3页
Stanley-hyperplane.pdf_第4页
Stanley-hyperplane.pdf_第5页
资源描述:

《Stanley-hyperplane.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnIntroductiontoHyperplaneArrangementsRichardP.StanleyContentsAnIntroductiontoHyperplaneArrangements1Lecture1.Basicde nitions,theintersectionposetandthecharacteristicpolynomial2Exercises12Lecture2.Propertiesoftheintersectionposetandgraphicalarrangements13

2、Exercises30Lecture3.Matroidsandgeometriclattices31Exercises39Lecture4.Brokencircuits,modularelements,andsupersolvability41Exercises58Lecture5.Finite elds61Exercises81Bibliography893IAS/ParkCityMathematicsSeriesVolume00,0000AnIntroductiontoHyperplaneArrang

3、ementsRichardP.Stanley12R.STANLEY,HYPERPLANEARRANGEMENTSLECTURE1Basicde nitions,theintersectionposetandthecharacteristicpolynomial1.1.Basicde nitionsThefollowingnotationisusedthroughoutforcertainsetsofnumbers:NnonnegativeintegersPpositiveintegersZintegers

4、QrationalnumbersRrealnumbersR+positiverealnumbersCcomplexnumbers[m]thesetf1;2;:::;mgwhenm2NWealsowrite[tk](t)forthecoecientoftkinthepolynomialorpowerseries(t).Forinstance,[t2](1+t)4=6.A nitehyperplanearrangementAisa nitesetofanehyperplanesinsomevector

5、spaceV=Kn,whereKisa eld.Wewillnotconsiderin nitehyperplanearrangementsorarrangementsofgeneralsubspacesorotherobjects(thoughtheyhavemanyinterestingproperties),sowewillsimplyusethetermarrangementfora nitehyperplanearrangement.MostoftenwewilltakeK=R,butaswe

6、willseeevenifwe'reonlyinterestedinthiscaseitisusefultoconsiderother eldsaswell.Tomakesurethatthede nitionofahyperplanearrangementisclear,wede nealinearhyperplanetobean(n1)-dimensionalsubspaceHofV,i.e.,H=fv2V:v=0g;whereisa xednonzerovectorinVandvistheus

7、ualdotproduct:X(1;:::;n)(v1;:::;vn)=ivi:AnanehyperplaneisatranslateJofalinearhyperplane,i.e.,J=fv2V:v=ag;whereisa xednonzerovectorinVanda2K.IftheequationsofthehyperplanesofAaregivenbyL1(x)=a1;:::;Lm(x)=am,wherex=(x1;:::;xn)andeachLi(x)isahomogeneouslin

8、earform,thenwecallthepolynomialQA(x)=(L1(x)a1)(Lm(x)am)thede ningpolynomialofA.Itisoftenconvenienttospecifyanarrangementbyitsde ningpolynomial.Forinstance,thearrangementAconsistingofthencoordinatehyperplaneshas

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签