资源描述:
《Calegari - Classical Geometry.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CLASSICALGEOMETRY—LECTURENOTESDANNYCALEGARI1.ACRASHCOURSEINGROUPTHEORYAgroupisanalgebraicobjectwhichformalizesthemathematicalnotionwhichex-pressestheintuitiveideaofsymmetry.Westartwithanabstractdefinition.Definition1.1.AgroupisasetGandanoperationm:GG!Gcalledmultiplic
2、ationwiththefollowingproperties:(1)misassociative.Thatis,foranya;b;c2G,m(a;m(b;c))=m(m(a;b);c)andtheproductcanbewrittenunambiguouslyasabc.(2)Thereisauniqueelemente2Gcalledtheidentitywiththepropertiesthat,foranya2G,ae=ea=a(3)Foranya2GthereisauniqueelementinGdenoteda
3、1calledtheinverseofasuchthataa 1=a 1a=eGivenanobjectwithsomestructuralqualities,wecanstudythesymmetriesofthatobject;namely,thesetoftransformationsoftheobjecttoitselfwhichpreservethestructureinquestion.Obviously,symmetriescanbecomposedassociatively,sincetheeffectofas
4、ymmetryontheobjectdoesn’tdependonwhatsequenceofsymmetriesweappliedtotheobjectinthepast.Moreover,thetransformationwhichdoesnothingpreservesthestructureoftheobject.Finally,symmetriesarereversible—performingtheoppositeofasymmetryisitselfasymmetry.Thus,thesymmetriesofan
5、object(alsocalledtheautomorphismsofanobject)areanexampleofagroup.Thepoweroftheabstractideaofagroupisthatthesymmetriescanbestudiedbythemselves,withoutrequiringthemtobetiedtotheobjecttheyaretransforming.Soforinstance,thesamegroupcanactbysymmetriesofmanydifferentobject
6、s,oronthesameobjectinmanydifferentways.Example1.2.Thegroupwithonlyoneelementeandmultiplicationee=eiscalledthetrivialgroup.Example1.3.TheintegersZwithm(a;b)=a+bisagroup,withidentity0.Example1.4.ThepositiverealnumbersR+withm(a;b)=abisagroup,withidentity1.Example1.5.T
7、hegroupwithtwoelementsevenandoddand“multiplication”givenbytheusualrulesofadditionofevenandoddnumbers;hereevenistheidentityelement.ThisgroupisdenotedZ=2Z.Example1.6.Thegroupofintegersmodnisagroupwithm(a;b)=a+bmodnandidentity0.ThisgroupisdenotedZ=nZandalsobyCn,thecycl
8、icgroupoflengthn.12DANNYCALEGARIDefinition1.7.IfGandHaregroups,onecanformtheCartesianproduct,denotedGH.Thisisagroupwhoseelementsaretheelem