Calegari - Classical Geometry.pdf

Calegari - Classical Geometry.pdf

ID:34520123

大小:305.06 KB

页数:42页

时间:2019-03-07

Calegari - Classical Geometry.pdf_第1页
Calegari - Classical Geometry.pdf_第2页
Calegari - Classical Geometry.pdf_第3页
Calegari - Classical Geometry.pdf_第4页
Calegari - Classical Geometry.pdf_第5页
资源描述:

《Calegari - Classical Geometry.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CLASSICALGEOMETRY—LECTURENOTESDANNYCALEGARI1.ACRASHCOURSEINGROUPTHEORYAgroupisanalgebraicobjectwhichformalizesthemathematicalnotionwhichex-pressestheintuitiveideaofsymmetry.Westartwithanabstractdefinition.Definition1.1.AgroupisasetGandanoperationm:GG!Gcalledmultiplic

2、ationwiththefollowingproperties:(1)misassociative.Thatis,foranya;b;c2G,m(a;m(b;c))=m(m(a;b);c)andtheproductcanbewrittenunambiguouslyasabc.(2)Thereisauniqueelemente2Gcalledtheidentitywiththepropertiesthat,foranya2G,ae=ea=a(3)Foranya2GthereisauniqueelementinGdenoteda

3、1calledtheinverseofasuchthataa1=a1a=eGivenanobjectwithsomestructuralqualities,wecanstudythesymmetriesofthatobject;namely,thesetoftransformationsoftheobjecttoitselfwhichpreservethestructureinquestion.Obviously,symmetriescanbecomposedassociatively,sincetheeffectofas

4、ymmetryontheobjectdoesn’tdependonwhatsequenceofsymmetriesweappliedtotheobjectinthepast.Moreover,thetransformationwhichdoesnothingpreservesthestructureoftheobject.Finally,symmetriesarereversible—performingtheoppositeofasymmetryisitselfasymmetry.Thus,thesymmetriesofan

5、object(alsocalledtheautomorphismsofanobject)areanexampleofagroup.Thepoweroftheabstractideaofagroupisthatthesymmetriescanbestudiedbythemselves,withoutrequiringthemtobetiedtotheobjecttheyaretransforming.Soforinstance,thesamegroupcanactbysymmetriesofmanydifferentobject

6、s,oronthesameobjectinmanydifferentways.Example1.2.Thegroupwithonlyoneelementeandmultiplicationee=eiscalledthetrivialgroup.Example1.3.TheintegersZwithm(a;b)=a+bisagroup,withidentity0.Example1.4.ThepositiverealnumbersR+withm(a;b)=abisagroup,withidentity1.Example1.5.T

7、hegroupwithtwoelementsevenandoddand“multiplication”givenbytheusualrulesofadditionofevenandoddnumbers;hereevenistheidentityelement.ThisgroupisdenotedZ=2Z.Example1.6.Thegroupofintegersmodnisagroupwithm(a;b)=a+bmodnandidentity0.ThisgroupisdenotedZ=nZandalsobyCn,thecycl

8、icgroupoflengthn.12DANNYCALEGARIDefinition1.7.IfGandHaregroups,onecanformtheCartesianproduct,denotedGH.Thisisagroupwhoseelementsaretheelem

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。