欢迎来到天天文库
浏览记录
ID:344992
大小:130.50 KB
页数:4页
时间:2017-07-26
《fpga在车牌字符识别方法的设计方案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、FPGA在车牌字符识别方法的设计方案本文所构建的车牌字符系统基于FPGA平台,具有并行运算能力强、接口逻辑丰富等特性,为构建实时、便携的车牌字符识别系统提供了一种有效、可行的解决方案。智能交通系统已成为当前交通管理发展的重要方向,而车辆牌照识别是计算机视觉与模式识别在智能交通领域应用的重要研究课题之一,有着广泛的实际应用前景[1]。传统的车辆牌照识别大多以PC平台上的纯软件算法[2][3]或DSP处理器[4]为核心来实现。由PC机构建的系统非小型化,在系统实时性的方面存在不足,主要用于前期算法的研究;
2、而以通用的数字信号处理器(DSP)为核心的车牌识别系统外围电路设计复杂,开发调试困难,系统的可扩展性和升级性较差。1系统概述系统的整体设计流程如下图1-1所示。本系统主要采用Altera公司的DE2开发板为实验平台,根据该系统实现的功能,将系统划分为硬、软件两部分,硬件部分包括车牌采集[5][6]和A/D转换、车牌预处理等;软件部分主要使用CycloneIIFPGA内嵌的NIOSII软核,采用SOPCBuilder配置生成片上系统,并使用模板匹配算法对车牌进行识别,最后识别结果在LED上显示。2车牌预
3、处理2.1粗定位和灰度化车牌定位是整个系统的关键问题之一,它直接影响了后续的分割以及识别的准确率。考虑到整个图像车牌部分的字符颜色和车牌背景颜色差别很大,其灰度级别分布有一定规律和范围,兼之车牌的宽度有一定的比例,因此可以将车牌从背景图片中分离出来。我国现有的车辆主要有蓝底白字牌照、黄底黑字牌照等四种类型。鉴于车牌前景、背景色的颜色特征,可以通过对颜色通道的分析来大致的确定车牌所在的位置以完成车牌位置的粗定位。在确定参数的时候,除了要考虑主色的下限参数以外还要考虑另外二个通道的上限参数。经过反复的试验
4、对比后得出经验参数值为:以蓝底白字的车牌为例,在RGB三个通道中:R10’b0110110000;G10’b0111010000;B10’0110110000,由以上参数为扫描阈值,自动剔除车牌位置之外的其他图像部分,完成粗定位。2.2中值滤波处理粗定位后的车牌首先进行灰度化处理以减小数据量利于实时处理。其次为了抑制车牌图像在采集时产生的椒盐噪声等脉冲噪声影响,改善图像质量,本文对灰度化后的车牌图像进行中值滤波处理。在FPGA中实现中值滤波,出于实际处理速度、处理效果和器件资源考虑,本文选用3×3邻域
5、窗口。考虑到FPGA强大的并行处理数据能力,此处设计一种对3×3邻域中九个数据一起处理的方法,它是基于三输入排序单元构成,而每个三输入单元又是由若干二输入单元构成。这种方法比传统的冒泡排序法减少了逻辑资源的占用,却和其一样能找出中值,且只需经过3级的比较,即3个时钟周期的延时就可以找出中值。图2-2为本文在FPGA中设计实现快速中值滤波的框图。据此即完成了所采集的车牌图像的中值滤波去噪。2.3二值化处理因为车牌定位和字符分割都是基于车牌区域的二值化结果进行,所以二值化的效果直接影响到车牌识别的效果。由
6、于要从待检测的车牌图像区域截取图像的背景不会很复杂。前景区域和背景区域的差异比较明显,所以车牌图像的灰度直方图将有明显双峰效果。本文通过直方图的双峰法的方法来求取阈值,对车牌图像进行二值化处理。3车牌检测在对采集到的车牌图像二值化处理以后,一帧图像的大小大幅度减小,约为400k左右,下面就是把该二值化车牌图像传输至NIOSII软核内进行分割等后续处理,考虑到NIOSII软核中资源丰富的特点,本文通过增加输入输出口的数量来提升数据传入的速度,从而满足系统的实时性处理要求。根据数据传输需求,本文设计通过2
7、2个32bit的输入输出口来传送数据,虽然22×32=704bit相比一帧图像的一行720bit少了16bit,但考虑到车牌图像的边缘是非字符目标区域的背景图像,对最终识别结果的影响甚小,故可以近乎忽略。3.1基于车牌字母及数字特征的准确定位通过车牌的彩色特性对车牌进行预定位后,再根据车牌号码的字母和数字在二值化后的特性准确定位出车牌的位置,如果此时定位出车牌的位置在彩色通道预定位的车牌区域内,则说明车牌位置已经确定,如果不在彩色通道定义的车牌位置范围之内,则需要重新判断。(1)定位牌照的上下边界:若
8、某一行的0→1(白到黑)和1→0(黑到白)变化次数大于设定的阈值,则设其为待测车牌的最低点,继续扫描直至0→1和1→0变化次数小于阈值,将该阈值设为待测车牌的最高点。若最高点与最低点之差大于15,则认为目标已检测到,否则继续进行扫描;如果未检测到符合上述条件的目标,则自动门限值重复以上的操作,直到找到目标为止。(2)定位牌照的左右边界:在找到车牌的上下限后,利用二值图像在竖直方向上的投影作为特征,从左到右寻找目标的中心点坐标。车牌定位效果如图3-1所示:
此文档下载收益归作者所有