资源描述:
《a new geometric setting for lax equationsnew》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、ANEWGEOMETRICSETTINGFORLAXEQUATIONS~JFCarinenayandEMartnezzyDepto.deFsicaTeorica,UniversidaddeZaragoza50009-Zaragoza,SpainzDepto.deMatematicaAplicada,CPSI,UniversidaddeZaragozaMaradeLuna3,50015-Zaragoza,SpainAbstract.{WeshowtheexistenceofLaxequationswhichdoesnotcorre-spondtothevani
2、shingoftheLieorcovariantderivativeofa(1,1)-typetensoreldwithrespecttoavectoreld,buttheyhaveadierentorigin,andweprovideamoregeneralsettingforthiskindofequations.PACS:02.30.+m,03.20.+i.1991MSC:34A26,34C20,58F07.Keywords:Laxequations,secondorderdierentialequations,derivations.1.Introducti
3、onLaxequations[1]wereintroducedwhenstudyingisospectralproblems.Moreespecicaly,ifL(t)isafamilyoflinearoperatorsdependingonaparam-etertandtheevolutionequationintcanbewrittenasL=[M;L],thentheteigenvalues(t)ofL(t)areconstantandtheireigenvectors,i.e.L(t)=,evolveaccordingto=M.InthatwaytheKort
4、ewegdeVriesequationistassociatedwithSchrodingerequationandtheexistenceofaninnitenumberofconstantsofmotionininvolutionisrelatedwiththepossibilityofsuchdescrip-tionasaLaxequation.Whenitwasdiscoveredthatmanyinterestingphysicalsystemsdescribedbypartialdierentialequationscanbedealtwithinthefr
5、ameworkofinnite-dimensionalHamiltoniansystems,theinterestinlookingforageometricalsettingfortheabovementionedLaxequationswasevidentandseveralpapers[2,3]proposedageometricalinterpretationascorrespondingtothevanishingoftheLiederivativeofatype(1;1)tensoreldwrtavectoreldX,L=0.Thisfactisver
6、yimportantbecausethereexistmanywaysXofconstructionofsuchtensoreldsinvariantunderavectoreldX.ThisisforinstancethecasewhenXisalocally-Hamiltonianvectoreldinasymplectic0manifold(M;!)andthereexistsanotherX-invarianttwoform!.Suchaninvariantformcanbefoundwhenwehaveasymmetry,eitheranite'orani
7、nnitesimaloneY,ofXwhichisnotasymmetryof!.Infact,itsucesto1~2CarinenaandMartnezconsidertherelation'L!=L'!,or[LL?LL]!=0,inXXYYX'(X)00ordertoseethat!='!intherstcaseor!=L!inthesecondoneisY?10suchinvariant2-form.Then,the(1,1)tensoreld:!^!^obtainedbyV1