极值点偏移问题处理策略与探究

极值点偏移问题处理策略与探究

ID:34435179

大小:1.18 MB

页数:14页

时间:2019-03-06

极值点偏移问题处理策略与探究_第1页
极值点偏移问题处理策略与探究_第2页
极值点偏移问题处理策略与探究_第3页
极值点偏移问题处理策略与探究_第4页
极值点偏移问题处理策略与探究_第5页
资源描述:

《极值点偏移问题处理策略与探究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.极值点偏移问题的处理策略及探究所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。若函数在处取得极值,且函数与直线交于,两点,则的中点为,而往往.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也

2、就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索!【问题特征】......【处理策略】一、不含参数的问题.例1.(2010天津理)已知函数,如果,且,证明:【解析】法一:,易得在上单调递增,在上单调递减,时,,,时,,函数在处取得极大值,且,如图所示.由,不妨设,则必有,构造函数,则,所以在上单调递增,,也即对恒成立.由,则,所以,即......,又因为,且在上单调递减,所以,即证法二:欲证,即证,由法一知,故,又因为在上单调递减,故只需证,又因为,故也即证,构造函数,则等价于

3、证明对恒成立.由,则在上单调递增,所以,即已证明对恒成立,故原不等式亦成立.法三:由,得,化简得…,不妨设,由法一知,.令,则,代入式,得,反解出,则,故要证:,即证:,又因为,等价于证明:…,构造函数,则,故在上单调递增,,从而也在上单调递增,,即证式成立,也即原不等式成立.法四:由法三中式,两边同时取以为底的对数,得,也即,从而,令,则欲证:,等价于证明:…,......构造,则,又令,则,由于对恒成立,故,在上单调递增,所以,从而,故在上单调递增,由洛比塔法则知:,即证,即证式成立,也即原不

4、等式成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.一、含参数的问题.例2.已知函数有两个不同的零点,求证:.【解析】思路1:函数的两个零点,等价于方程的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数这个媒介去构造出新的函数.解答如下:因为函数有两个零点,所以,由得:,要证明,只要证明,由得:,即,即证:

5、,不妨设,记,则,因此只要证明:,......再次换元令,即证构造新函数,求导,得在递增,所以,因此原不等式获证.【点评】含参数的极值点偏移问题,在原有的两个变元的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。例3.已知函数,为常数,若函数有两个零点,试证明:【解析】法一:消参转化成无参数问题:,是方程的两根,也是方程的两根,则是,设,,则,从而,此问题等价转化成为例1,下略.法二:利用参数作为媒介

6、,换元后构造新函数:不妨设,∵,∴,∴,欲证明,即证.∵,∴即证,∴原命题等价于证明,即证:,令,构造,此问题等价转化成为例2中思路二的解答,下略.......法三:直接换元构造新函数:设,则,反解出:,故,转化成法二,下同,略.例4.设函数,其图像与轴交于两点,且.证明:.【解析】由,易知:的取值范围为,在上单调递减,在上单调递增.法一:利用通法构造新函数,略;法二:将旧变元转换成新变元:∵两式相减得:,记,则,设,则,所以在上单调递减,故,而,所以,又∵是上的递增函数,且,∴.容易想到,但却是

7、错解的过程:欲证:,即要证:,亦要证,也即证:......,很自然会想到:对两式相乘得:,即证:.考虑用基本不等式,也即只要证:.由于.当取将得到,从而.而二元一次不等式对任意不恒成立,故此法错误.【迷惑】此题为什么两式相减能奏效,而变式相乘却失败?两式相减的思想基础是什么?其他题是否也可以效仿这两式相减的思路?【解决】此题及很多类似的问题,都有着深刻的高等数学背景.拉格朗日中值定理:若函数满足如下条件:(1)函数在闭区间上连续;(2)函数在开区间内可导,则在内至少存在一点,使得.当时,即得到罗尔

8、中值定理.上述问题即对应于罗尔中值定理,设函数图像与轴交于两点,因此,∴,……由于,显然与,与已知不是充要关系,转化的过程中范围发生了改变.例5.(11年,辽宁理)已知函数(I)讨论的单调性;......(II)设,证明:当时,;(III)若函数的图像与轴交于两点,线段中点的横坐标为,证明:.【解析】(I)易得:当时,在上单调递增;当时,在上单调递增,在上单调递减.(II)法一:构造函数,利用函数单调性证明,方法上同,略;法二:构造以为主元的函数,设函数,则,,由,解得,当时,,而

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。