random electrical networks on complete graphsnew

random electrical networks on complete graphsnew

ID:34421830

大小:461.57 KB

页数:51页

时间:2019-03-06

random electrical networks on complete graphsnew_第1页
random electrical networks on complete graphsnew_第2页
random electrical networks on complete graphsnew_第3页
random electrical networks on complete graphsnew_第4页
random electrical networks on complete graphsnew_第5页
资源描述:

《random electrical networks on complete graphsnew》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、RANDOMELECTRICALNETWORKSONCOMPLETEGRAPHSII:PROOFSGeoffreyGrimmettandHarryKestenAbstra t.ThispapercontainstheproofsofTheorems2and3ofthearticleenti-tledRandomelectricalnetworksoncompletegraphs,writtenbythesameauthorsandpublishedintheJournaloftheLondonMathemati

2、calSociety,vol.30(1984),pp.171–192.Thecurrentpaperwaswrittenin1983butwasnotpublishedinajournal,althoughitsexistencewasannouncedintheLMSpaper.ThisTEXversionwascreatedon9July2001.Itincorporatesminorimprovementstoformattingandpunctuation,butnochangehasbeenmadet

3、othemathematics.WestudytheeffectiveelectricalresistanceofthecompletegraphKn+2wheneachedgeisallocatedarandomresistance.Theseresistancesareassumedindepen-dentwithdistribution−1−1(R=∞)=1−nγ(n),(R≤x)=nγ(n)F(x)for0≤x<∞,whereFisafixeddistributionfunctionandγ(n)→γ≥

4、0asn→∞.Theasymptoticeffectiveresistancebetweentwochosenverticesisidentifiedinthetwocasesγ≤1andγ>1,andthecaseγ=∞isconsidered.Theanalysisproceedsviadetailedestimatesbasedonthetheoryofbranchingprocesses.1.IntroductionInthesenoteswegivecompleteproofsofTheorems2and

5、3andafurtherindicationoftheproofofTheorem1inGrimmettandKesten(1983).Weusethesamenotationasinthatpaperandwethereforerepeatonlythebarestnecessities.Kn+2denotesthecompletegraphwithn+2vertices,whichwelabelas{0,1,...,n,∞}.(SeeBollob´as(1979)fordefinition).Eachedge

6、eisgivenarandomresistanceR(e)withdistributionγ(n)P(R(e)≤x)=F(x)for0≤x<∞n(1.1)γ(n)P(R(e)=∞)=1−,nwhereFisafixeddistributionfunctionconcentratedon[0,∞)andγ(n)asequenceofnumberssuchthat0≤γ(n)≤n.AlltheresistancesR(e),e∈Kn+2,areassumedindependent.Rndenotestheresult

7、ing(random)effectiveresistanceinKn+2betweenthevertices0and∞.Weshallprovethefollowingresult(thenumberingistakenfromGrimmettandKesten(1983)):MathematicsSubjectClassification(2000).60K35,82B43.Keywordsandphrases.Electricalnetwork,completegraph,randomgraph,branchi

8、ngprocess.12GEOFFREYGRIMMETTANDHARRYKESTENTheorem2.If(1.2)limγ(n)=γ≤1n→∞then(1.3)limPRn=∞=1.n→∞TodescribethelimitdistributionofRnwhenγ(n)→γ>1weneeda(one-type)Bienaym´e–Galton–Watsonprocess{Zn}

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。