资源描述:
《random electrical networks on complete graphsnew》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、RANDOMELECTRICALNETWORKSONCOMPLETEGRAPHSII:PROOFSGeoffreyGrimmettandHarryKestenAbstra
t.ThispapercontainstheproofsofTheorems2and3ofthearticleenti-tledRandomelectricalnetworksoncompletegraphs,writtenbythesameauthorsandpublishedintheJournaloftheLondonMathemati
2、calSociety,vol.30(1984),pp.171–192.Thecurrentpaperwaswrittenin1983butwasnotpublishedinajournal,althoughitsexistencewasannouncedintheLMSpaper.ThisTEXversionwascreatedon9July2001.Itincorporatesminorimprovementstoformattingandpunctuation,butnochangehasbeenmadet
3、othemathematics.WestudytheeffectiveelectricalresistanceofthecompletegraphKn+2wheneachedgeisallocatedarandomresistance.Theseresistancesareassumedindepen-dentwithdistribution−1−1(R=∞)=1−nγ(n),(R≤x)=nγ(n)F(x)for0≤x<∞,whereFisafixeddistributionfunctionandγ(n)→γ≥
4、0asn→∞.Theasymptoticeffectiveresistancebetweentwochosenverticesisidentifiedinthetwocasesγ≤1andγ>1,andthecaseγ=∞isconsidered.Theanalysisproceedsviadetailedestimatesbasedonthetheoryofbranchingprocesses.1.IntroductionInthesenoteswegivecompleteproofsofTheorems2and
5、3andafurtherindicationoftheproofofTheorem1inGrimmettandKesten(1983).Weusethesamenotationasinthatpaperandwethereforerepeatonlythebarestnecessities.Kn+2denotesthecompletegraphwithn+2vertices,whichwelabelas{0,1,...,n,∞}.(SeeBollob´as(1979)fordefinition).Eachedge
6、eisgivenarandomresistanceR(e)withdistributionγ(n)P(R(e)≤x)=F(x)for0≤x<∞n(1.1)γ(n)P(R(e)=∞)=1−,nwhereFisafixeddistributionfunctionconcentratedon[0,∞)andγ(n)asequenceofnumberssuchthat0≤γ(n)≤n.AlltheresistancesR(e),e∈Kn+2,areassumedindependent.Rndenotestheresult
7、ing(random)effectiveresistanceinKn+2betweenthevertices0and∞.Weshallprovethefollowingresult(thenumberingistakenfromGrimmettandKesten(1983)):MathematicsSubjectClassification(2000).60K35,82B43.Keywordsandphrases.Electricalnetwork,completegraph,randomgraph,branchi
8、ngprocess.12GEOFFREYGRIMMETTANDHARRYKESTENTheorem2.If(1.2)limγ(n)=γ≤1n→∞then (1.3)limPRn=∞=1.n→∞TodescribethelimitdistributionofRnwhenγ(n)→γ>1weneeda(one-type)Bienaym´e–Galton–Watsonprocess{Zn}