欢迎来到天天文库
浏览记录
ID:34392963
大小:46.00 KB
页数:10页
时间:2019-03-05
《华应龙圆与认识教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、华应龙:《圆的认识》课堂实录 【教学目标】1.认识圆的特征,初步学会画圆,发展空间观念。2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。 【教学过程】 师生问好。一、情景中创造“圆”师:同学们请看题目:“小明参加奥林匹克寻宝活动,得到一张纸条,纸条上面写的是:宝物距离左脚三米。”宝物可能在哪呢?生思考师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?生:找到了师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能把你的想法在纸上表示出来吗?想,开始。学生动手
2、实践,师巡视。师:真佩服,真佩服,我们西安的小朋友真棒!会动脑子,。除了你表示的那个点,还有其他可能吗?生思考。师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。生纷纷举手。师:除了这一点,刚才我看到,还有的同学找到了这一点。[课件演示:在红点左侧找出一个距离红点3米的点]还有这一点,这一点[课件演示:分别在红点上下的距离为3米的点]我看有的同学还画了这些斜点,是吗?还有其他的可能吗?[课件演示:越来越密,最后连成了圆]师
3、:想到圆的举手。哇,真佩服,刚才我看有的同学都画出圆了,是吗?看屏幕,这是什么?认识吗?生:认识,圆二、追问中初识“圆”资料师:那宝物可能在哪里呢?生:在圆的范围内,在圆的这条线上。师:你刚才的说法很有意思,先说“在圆的范围内”,后来改成“在圆的这条线上”。如果在范围内,距离不够3米,如果在圆上,距离够3米。那你们怎么告诉小明呢?如果宝物在圆上,怎么表达告诉小明呢?生:可以这样对小明说:“以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方”。师:同意吗?真厉害。刚才她说到两个词,一个
4、是以左脚为“圆心”还有一个是半径多少?[板书:圆心,半径]生:3米师:就用上这两个词,就很准确地表达出了圆的位置,对吧。如果只说以左脚为圆心,不说半径3米,告诉小明,宝物啊就在以你左脚为圆心的圆上。行不行?生:不行师:为什么不行?生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。师:那个圆可以无限延伸。我理解他的意思了,你理解了吗?生:理解了。师:也就是说圆的半径没定,圆的大小没定。对不对。生:对师:这样的话,可以画多少个圆,可以无限延伸,对不对。那如果不说“以左脚为圆心”行不行?生:不行,那样圆的位置就
5、可以无限延伸,。师:除了说“以左脚为圆心,半径为3米的圆上”还可以怎么说?生活中听说过吗?生:也可以说直径是6米。师:同意吗?生:同意。师:可以说:以左脚为圆心,直径为——”生:6米师:对。这个“直径:也能表达圆的大小。[板书:直径]师:为什么 宝物可能所在的位置会是一个圆呢?生:因为在一个圆内,所有的 半径都相等。资料师:哦,他说了这个。什么 宝物可能所在的位置会是一个圆呢?生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。师:哦,可以随便走一圈。方向没有定,是吧。这也是另外一个角度看问题。刚才两个同学说的都很有道理,不
6、过要很好的说明这个问题我们可以用”圆的特点“来说明。你觉得圆有特点呢?生:我觉得圆有无数条半径,无数条直径。生:圆心到圆上任意一点的距离都是相等的。师:我们说图形的特点的时候一般要和以前学过的图形作比较。一句话,有比较才有结论。[课件:三角形,正方形等]以前我们学过三角形,正方形等。我们以前说图形的时候往往从“边”和“角”两个角度来说明,那你看,从 边和角的角度来看,圆有什么特点呢?生:它既没有棱也没有角。师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗?生:对师:没有棱是什么意思?生:没有棱是说它没有边,它不象正方形有4
7、条边。师追问:那它是没有边吗?生:不是,有边。师:有边,几条边?生:1条。师:那你们说圆的边和我们以前学过的图形有什么不同?生:以前学过的图形的边是直线,而圆的边是曲线构成的。师:同意?生:同意。师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?生:有!师:有,几条边?生:一条边。师:这是圆很特别的地方。其他图形,最起码有3条边,而圆呢?只有一条边。并且它的边怎样?生:是曲线的。师:是曲线的。其他的是直线或者说是线段围成的。资料师:圆,我们从边和角来看是这样的特点。我们的祖先墨子说:圆一中同长也[板书]知道这句话什么意
8、思吗?一中指什么?生:圆心师:同长,什么同长?生:半径师:半径同长,有人说直径也同长。同意古人说的话吗?生:同意。师:“圆,一中同长也”。难道说正三角形,正四边形正五边行不是“一中同长”吗?认为是的举手,认为不是的举手 。为什么不是呢?生:这些图形中心到角的距离
此文档下载收益归作者所有