2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf

2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf

ID:34216799

大小:2.57 MB

页数:8页

时间:2019-03-04

2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf_第1页
2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf_第2页
2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf_第3页
2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf_第4页
2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf_第5页
资源描述:

《2011-Robust_Tracking_Using_Local_Sparse_Appearance_Model_and_K-Selection.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RobustTrackingUsingLocalSparseAppearanceModelandK-SelectionBaiyangLiu1JunzhouHuang1LinYang2CasimirKulikowsk11Rutgers,TheStateUniversityofNewJersey2UMDNJ-RobertWoodJohnsonMedicalSchoolPiscataway,NJ,08854Piscataway,NJ,08854baiyang,jzhuang,kulikows@cs.rut

2、gers.eduyangli@umdnj.eduAbstractOnlinelearnedtrackingiswidelyusedforit’sadap-tiveabilitytohandleappearancechanges.However,itin-troducespotentialdriftingproblemsduetotheaccumula-(a)(b)(c)tionoferrorsduringtheself-updating,especiallyfortheoccludedscenario

3、s.Therecentliteraturedemonstratesthatappropriatecombinationsoftrackerscanhelpbal-ancestabilityandflexibilityrequirements.Wehavede-velopedarobusttrackingalgorithmusingalocalsparse(d)(e)(f)appearancemodel(SPT).Astaticsparsedictionaryandadynamicallyonlineup

4、datedbasisdistributionmodeltheFigure1.Thetargetappearance(a)ismodeledwithadictionary(b)andasparsecodinghistogram(c).Theconfidencemap(e)oftargetappearance.Anovelsparserepresentation-basedtheimage(d)istheinverseofthereconstructionerrorfromthevotingmapandsp

5、arseconstraintregularizedmean-shiftlearnedtargetdictionary.Thetargetcenterisfoundbyvotingandsupporttherobustobjecttracking.Besidesthesecontri-sparseconstraintwithregularizedmean-shiftontheprobabilitybutions,wealsointroduceanewdictionarylearningal-map(f)

6、.gorithmwithalocallyconstrainedsparserepresentation,calledK-Selection.Basedonasetofcomprehensiveexper-iments,ouralgorithmhasdemonstratedbetterperformancetheclassifierusingbothunlabeledandlabeleddata.Thethanalternativesreportedintherecentliterature.Multip

7、leInstanceLearningboostingmethod(MIL)[4]putsallsamplesintobagsandlabelsthem.Thedriftingprob-lemishandledinthismethodsincethetruetargetincluded1.Introductioninthepositivebagislearnedimplicitly.Recently,ithasGenerativeanddiscriminativemethodsaretwomajorbe

8、enshownthatanappropriatecombinationofcomplemen-categoriesusedincurrenttrackingtechniques.Thegen-tarytrackingalgorithmscanhelpalleviatedriftingproblemserativemodelsformulatethetrackingproblemassearch-[12,26,21,20].In[17,13],aspars

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签