压轴大题突破练(一)

压轴大题突破练(一)

ID:34197113

大小:51.50 KB

页数:4页

时间:2019-03-04

压轴大题突破练(一)_第1页
压轴大题突破练(一)_第2页
压轴大题突破练(一)_第3页
压轴大题突破练(一)_第4页
资源描述:

《压轴大题突破练(一)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、压轴大题突破练压轴大题突破练(一)(推荐时间:60分钟)1.已知函数f(x)=x2-(2a+1)x+alnx(a>0).(1)当a=1时,求函数f(x)的单调增区间;(2)求函数f(x)在区间[1,e]上的最小值.解 (1)a=1时,f(x)=x2-3x+lnx,定义域为(0,+∞),f′(x)=2x-3+,令f′(x)>0,∴2x2-3x+1>0(x>0),∴01,∴f(x)的单调增区间为,(1,+∞).(2)f(x)=x2-(2a+1)x+alnx,f′(x)=2x-(2a+1)+==.①当

2、0

3、a;a≥e时,f(x)min=e2-(2a+1)e+a.2.已知抛物线x2=4y,过点A(0,1)任意作一条直线l交抛物线C于M,N两点,O4/4为坐标原点.(1)求·的值;(2)过M,N分别作抛物线C的切线l1,l2,试探求l1与l2的交点是否在定直线上,并证明你的结论.解 (1)由题意知直线l的斜率存在,设直线l的方程为y=kx+1,M(x1,y1),N(x2,y2),联立方程组消去y得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4,y1y2=(kx1+1)(kx2+1)=k2x1x2+k(

4、x1+x2)+1=-4k2+4k2+1=1,故·=x1x2+y1y2=-4+1=-3.(2)因为x2=4y,所以y′=x,l1的方程为y-=x1(x-x1),整理得y=x1x-,同理得l2的方程为y=x2x-;联立方程x2×①-x1×②得(x2-x1)y=,y==-1,故l1与l2的交点的纵坐标等于-1,即l1与l2的交点在直线y=-1上.3.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(1)求函数f(x)的解析式;(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有

5、f(x

6、1)-f(x2)

7、≤4;(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.(1)解 f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,即解得a=1,b=0.∴f(x)=x3-3x.(2)证明 ∵f(x)=x3-3x,4/4∴f′(x)=3x2-3=3(x+1)(x-1),当-1

8、x1,x2,都有

9、f(x1)-f(x2)

10、≤

11、f(x)max-f(x)min

12、=2-(-2)=4.(3)解 f′(x)=3x2-3=3(x+1)(x-1),∵曲线方程为y=x3-3x,∴点A(1,m)(m≠-2)不在曲线上.设切点为M(x0,y0),则点M的坐标满足y0=x-3x0.因f′(x0)=3(x-1),故切线的斜率为3(x-1)=,整理得2x-3x+m+3=0.∵过点A(1,m)可作曲线的三条切线,∴关于x0的方程2x-3x+m+3=0有三个实根.设g(x0)=2x-3x+m+3,则g′(x0)=

13、6x-6x0,由g′(x0)=0,得x0=0或x0=1.∴g(x0)在(-∞,0)和(1,+∞)上单调递增,在(0,1)上单调递减.∴函数g(x0)=2x-3x+m+3的极值点为x0=0,x0=1.∴关于x0的方程2x-3x+m+3=0有三个实根的充要条件是解得-3

14、△AMB的面积的最大值及此时直线AB的方程.解 (1)当AB垂直于x轴时,显然不符合题意,所以可设直线AB的方程为y=kx+b,代入方程y2=4x得:k2x2+(2kb-4)x+b2=0,有x1+x2==2得b=-k,4/4∴直线AB的方程为y=k(x-1)+,∵AB中点的横坐标为1,∴AB中点的坐标为,∴AB的中垂线方程为y=-(x-1)+=-x+,∵AB的中垂线经过点P(0,2),故=2得k=,故直线AB的方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。