欢迎来到天天文库
浏览记录
ID:34189438
大小:3.48 MB
页数:45页
时间:2019-03-04
《基于优化bp神经网络的微博舆情预测模型研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、AbstractWiththerapiddevelopmentofIntemettechnology,micro—bloghasbecomeanimportantpartofpeople’Slives.Publicopinioncausedbythemicro—blogattractsmoreandmorepeople’Sattention.Sincethemicro—bloginformation’Spropagationvelocityisquickly,spreadwidelyandarbitrarynatu
2、reofmicro—blog,SOtheinformationonthemicro-bloghastrueandfalse.Positiveandnegativemicro—blogpublicopinionwillhavedifferenteffectsonpeople’Slives,someofthenegativemicro—blogpublicopinionwillevenconstituteacrisis,thenaseriousimpactonpublicsafety.Therefore,thestud
3、yonpredictedmicro—blogpublicopinionhasapracticalsignificance.Predictedmicro—blogpublicopinion,wemustgetdatawhichCanbeexpressedmicro—blogpublicopinionfirstly.Thepaperusesthediscretetimeseriestodescribemicro—blogpublicopinion’Strends.Inthispaper,weuseSinamicro-b
4、logplatformforbackground,accordingthehotmicro—blogtopictextextraction,analysis,forecastmicro—blogpublicopinion.Gettimeseriesstep:one诵tllSinamicro—blogAPIinterface,accesstomicro—blogtogetmicro—blogtextinsometime;Second,accordingthecharacteristicsofthecorrespond
5、ingpretreatmentmicro—blogtext,usethemethodsofstatisticalmicro-blogtopicandfoundthatmicro—bloghottopic;Third,statisticalthenumberofrepliesandforwardingnumberofmicro—bloghottopicforsometime,andusethenumbertoconsistofpublicopinionpredictionmodel’Sexperimentaldata
6、.BPneuralnetworkCanbebetterfitthenonlinearvariationofmicro—blogpublicopinion’Stimeseries,whichcanbeusedtopredictthemicro—blogpublicopinion,buttherearesomelimitations:BPneuralnetwork’Slearningalgorithmhastheweaknessofforgettingthealreadylearningsamples.Whenther
7、eisnoiseinthesample,theremaycausepoorperformanceonB.Pneuralnetwork;BPneuralnetworkalsohasaslowspeedofconvergence,andeasytofallintolocalminima.Wedidtwotasks:First,changethenetwork’SstructuretoimproveBPneuralnetwork.BehindtheBPneuralnetworkinputlayerneurons,wead
8、dalayertostoretheinputlayer’Shistorydata.Whenthesampleshaveanoisedata,thelayercandelaynetworkparameterstoimprovetheperformanceofBPneuralnetwork.ThesecondistouseGSAtooptimizethenetw
此文档下载收益归作者所有