云计算中任务调度算法的研究综述

云计算中任务调度算法的研究综述

ID:34177579

大小:62.30 KB

页数:8页

时间:2019-03-04

云计算中任务调度算法的研究综述_第1页
云计算中任务调度算法的研究综述_第2页
云计算中任务调度算法的研究综述_第3页
云计算中任务调度算法的研究综述_第4页
云计算中任务调度算法的研究综述_第5页
资源描述:

《云计算中任务调度算法的研究综述》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、云计算中任务调度算法的研究综述-电子商务论文云计算中任务调度算法的研究综述文/张艳敏摘要:云计算中任务调度算法的好坏直接影响云计算系统整体性能,也影响着云计算系统处理用户提交的任务的能力。本文归纳了云计算调度的特点和性能指标,总结了云计算中的任务调度算法,分析了云计算任务调度算法的研究现状及其进展。最后讨论了现有任务调度策略存在的问题,为云调度研究指明了方向和思路。关键词:云计算;任务调度;遗传算法;蚁群算法前言云计算是一种基于互联网的新的服务模式,这种模式按使用量付费,提供可用的、便捷的、按需的网络访问,它将用户需求的计算任务分布在由大量计算机构成的数据中心,数据中

2、心采用虚拟化技术,把各种软硬件资源抽象为虚拟化资源,再通过资源调度技术使各种应用能够根据需要获取计算能力、存储空间和信息服务。在云计算环境中,一个大规模计算任务需要进行分布式并行处理,系统首先将逻辑上完整的一个大任务切分成多个子任务,然后根据任务的相应信息采取合适的调度算法,在不同的资源节点上运行这些子任务,所有的子任务处理完后进行汇总,最后将结果传给用户。云计算任务调度的目的是给需要的用户分配不同的资源,在某一特定的云环境下,依据某一种规则使用资源,在不同的用户之间平衡和调整资源,在满足用户需求的前提下,使得任务完成时间尽量小,且资源利用率尽量高。调度最终要实现时间

3、跨度、服务质量、负载均衡、经济原则最优等目标。云计算任务调度是云计算研究中的重点和难点。任务调度算法的优劣会影响到云计算系统处理任务的能力。近几年,研究者针对云环境下的资源调度做了很多研究,主要体现在以提高云计算数据中资源利用率为宗旨的资源管理与调度、以降低云计算数据中心的能耗为目标的资源分配与调度、经济学的云资源管理模型研究等方面。本文综述了云环境下的任务调度算法,分析了近几年来典型的云计算任务调度算法的发展趋势,为相关领域的研究人员提供参考。1、网格任务调度与云计算任务调度的比较在网格计算和云计算中,虽然系统资源都是以数据池的形式呈现给用户,但它们之间的区别是网格

4、用户的任务是通过实际的物理资源来执行,而云计算环境下的用户任务是通过逻辑意义上的虚拟资源来执行。对于以上两种计算方式,都是由用户将任务提交给计算中心,系统通过对任务的需求进行分析,然后来寻找合适的资源节点执行,此时的用户并不关心执行任务的是哪个节点。网格系统通过用户预先设定的任务并行执行算法,并结合自己的调度系统使用户任务实现跨物理节点并行执行[1],云计算任务调度通常情况不会跨虚拟机并行调度。尽管云计算是在网格计算、分布式计算及并行计算的基础上发展起来的,但是云环境比较复杂,任务呈现多样性,而且是以商业服务作为宗旨。云计算任务调度策略不能照搬传统调度策略来满足用户提

5、出的各种任务要求,必须考虑怎样在高效任务调度与资源分配同时提高经济效益、资源利用率以及用户体验等各方面的因素。可靠的云服务和各层次的用户公平使用资源的机会是云计算调度策略必须考虑的问题,此外还需要有一个调度策略来提供系统可以使用的资源,以便满足多样化的用户需求。因此虚拟化技术在云计算中的广泛应用、中间层与资源节点以及用户与中间层之间的关系发生了很大变化,云计算应该研究新的任务调度策略来满足用户的要求。2、云计算任务调度算法2.1传统任务调度算法传统任务调度算法主要有Min-Min算法、Max-Min算法、Sufferage算法等。Min-Min算法是将任务分配给执行效

6、率最高的资源,这种算法容易导致负载大多集中在能力较强的资源节点上,使得资源负载极度不均衡。Max-Min算法首先要计算每一个任务在任一个可用资源上的最早完成时间,然后将具有最早执行时间的计算资源分配给最大的任务,随后更新资源的最早可用时间和任务集,直到全部任务调度完成。Min-Min算法是将小的任务分配到执行效率高的资源上进行,有很好的负载均衡性。当可执行任务的资源发生变化时,Max-Min算法的优势就不存在。Sufferage算法是以任务最小完成时间为调度目标。Sufferage算法的缺点是负载的平衡性能不高。基于传统调度算法进行改进的研究已有很多。王文豪[2]为了

7、解决Min-Min调度算法中存在的负载不平衡问题,改善系统负载的均衡性,提出基于Min-Min极限下压算法的负载模糊分类及局部重调度的算法。引入模糊分类的思想,根据各节点的负载大小,将节点分成三种类型:重负载、中负载和轻负载;对负载较重和较轻的节点进行重新调度,通过使用Min-Min极限下压算法来压缩资源节点完成任务的时间,改善算法的负载失衡问题。何丽[3]提出将优化能耗的调度方法应用到min-min任务调度算法中,它通过系统对任务结束时间的要求,先选取任务队列中的最小任务,然后分配到所需能耗最小的服务器上执行,结果表明能够较好地满足任务结束时间的要

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。