ln13 Generalized Method of Moments Estimation.pdf

ln13 Generalized Method of Moments Estimation.pdf

ID:34170982

大小:176.65 KB

页数:24页

时间:2019-03-03

ln13 Generalized Method of Moments Estimation.pdf_第1页
ln13 Generalized Method of Moments Estimation.pdf_第2页
ln13 Generalized Method of Moments Estimation.pdf_第3页
ln13 Generalized Method of Moments Estimation.pdf_第4页
ln13 Generalized Method of Moments Estimation.pdf_第5页
资源描述:

《ln13 Generalized Method of Moments Estimation.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ApEc8212EconometricAnalysisII--Lecture#13GeneralizedMethodofMomentsEstimationReadings:Wooldridge,Chapter14(Sections1-3,6)Almostallestimationmethodsineconometricscanbereinterpretedas“generalizedmethodofmoments”(GMM)estimators.Sincethe1980s,econometricianshaveseenhowusin

2、gthisframeworkleadstonewkindsofestimators,andclarifiestherelationshipsbetweenexistingestimators.Thisisparticularlyusefulforappliedworkusingnonlinearmodelsandtimesseriesestimation.RecallthatGMMforalinearsystemofequationswasdiscussedinLecture7.I.MethodofMomentsEstimation

3、BeforelookatGMM,itisusefultoreviewwhatitgeneralizes,whichismethodofmomentsestimation.Supposewehavesomevariableywhosedistribution(density)isdeterminedbyKparameters,denotedby:f(y)=f(y

4、)=f(y

5、1,2,…K)Wewanttoestimatetheparametersbasedonasampleofnobservationsofy,wheree

6、achobservationfromthesampleisindependentof(and1identicallydistributedas)alloftheotherobservations(noserialcorrelationorheteroscedasticity).Averygeneralmethodforobtainingestimatesistocalculatek“moments”ofybasedonthesampledata.Thesampleestimateofthekthuncentered(“raw”)mo

7、mentis:1nkmk=yik=1,2,…Kni1Definekastheexpectationofthesampleestimate:kkE[mk]=E[yi]Usetodenotetheexpectationofthefirstuncenteredmoment:=1.Thevarianceofmkisk2Var[mk]=(1/n)Var[yi]=(1/n)[2k-(k)]Thefirstequalityfollowsfromtheindependenceofthesampleobserva

8、tions,andthesecondfollowsfromthedefinitionofvariance:foranyvariablex,Var[x]222≡E[(x-E[x])]=E[x]-(E[x]).Thesamplemomentmkisaconsistentestimateofk,anditisalsoasymptoticallynormallydistributed:kplim[mk]=k=E[yi]2d2n(mk-k)N[0,2k-(k)]Theimportantthingisthatweca

9、nusemomentstoestimateparametersofthedistributionofavariableifweassumeaspecificfunctionalformofthedistributionofthatvariable.Forexample,supposeyisnormallydistributed.Thenthedistributionofyiscompletelydeterminedbytwoparameters,and2.Supposewehaveestimatesofthe2uncentere

10、dmoments,m1andm2E[m1]=,soourestimateofk2ism1.SinceVar[yi]=[2k-(k)],wecan22estimateofasm2-(m1).Thisestima

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。