欢迎来到天天文库
浏览记录
ID:34165082
大小:1.84 MB
页数:372页
时间:2019-03-03
《(24) (New Mathematical Monographs) Emily Riehl-Categorical Homotopy Theory-Cambridge University Press (2014).pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CategoricalHomotopyTheoryThisbookdevelopsabstracthomotopytheoryfromthecategoricalperspective,withaparticularfocusonexamples.PartIdiscussestwocompetingperspectivesbywhichonetypicallyfirstencountershomotopy(co)limits:eitherasderivedfunctorsdefin-ablewhentheappropriatediagramcategorie
2、sadmitcompatiblemodelstructuresorthroughparticularformulaethatgivetherightnotionincertainexamples.Riehlunifiestheseseeminglyrivalperspectivesanddemonstratesthatmodelstructuresondiagramcategoriesareunnecessary.Homotopy(co)limitsareexplainedtobeaspecialcaseofweighted(co)limits,afoun
3、dationaltopicinenrichedcategorytheory.InPartII,Riehlfurtherexaminesthistopic,separatingcategoricalargumentsfromhomotopicalones.PartIIItreatsthemostubiquitousaxiomaticframeworkforhomotopytheory–Quillen’smodelcategories.HereRiehlsimplifiesfamiliarmodelcategoricallemmasanddefini-tions
4、byfocusingonweakfactorizationsystems.PartIVintroducesquasi-categoriesandhomotopycoherence.EmilyRiehlisaBenjaminPeirceFellowintheDepartmentofMathematicsatHarvardUniversityandaNationalScienceFoundationMathematicalSciencesPost-doctoralResearchFellow.NEWMATHEMATICALMONOGRAPHSEditoria
5、lBoardBelaBollob´as,WilliamFulton,AnatoleKatok,´FrancesKirwan,PeterSarnak,BarrySimon,BurtTotaroAllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Foracompleteserieslistingvisitwww.cambridge.org/mathematics.1.M.CabanesandM.EnguehardRepresentation
6、TheoryofFiniteReductiveGroups2.J.B.GarnettandD.E.MarshallHarmonicMeasure3.P.CohnFreeIdealRingsandLocalizationinGeneralRings4.E.BombieriandW.GublerHeightsinDiophantineGeometry5.Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns6.S.Berhanu,P.D.Cordaro,andJ.HounieAnIntroducti
7、ontoInvolutiveStructures7.A.ShlapentokhHilbertsTenthProblem8.G.MichlerTheoryofFiniteSimpleGroupsI9.A.BakerandG.Wustholz¨LogarithmicFormsandDiophantineGeometry10.P.KronheimerandT.MrowkaMonopolesandThree-Manifolds11.B.Bekka,P.delaHarpe,andA.ValetteKazhdansProperty(T)12.J.Neisendorf
8、erAlgebraicMethodsinUnstableHomotopyTheo
此文档下载收益归作者所有