欢迎来到天天文库
浏览记录
ID:34157346
大小:2.11 MB
页数:67页
时间:2019-03-03
《植被覆盖区域无人机遥感影像匹配方法研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、分类号:密级:UDC:编号:201421101003河北工业大学硕士学位论文植被覆盖区域无人机遥感影像匹配方法研究论文作者:王渟玉学生类别:全日制学科门类:理学硕士学科专业:基础数学指导教师:何华职称:教授DissertationSubmittedtoHebeiUniversityofTechnologyforTheMasterDegreeofScienceinFundamentalMathematicsResearchonUAVRemoteSensingImageProcessinginVegetationAreabyWangTing
2、yuSupervisor:Prof.HeHuaDecember2016原创性声明本人郑重声明:所呈交的学位论文,是本人在导师指导下,进行研究工作所取得的成果。除文中已经注明引用的内容外,本学位论文不包含任何他人或集体已经发表的作品内容,也不包含本人为获得其他学位而使用过的材料。对本论文所涉及的研究工作做出贡献的其他个人或集体,均已在文中以明确方式标明。本学位论文原创性声明的法律责任由本人承担。学位论文作者签名:日期:关于学位论文版权使用授权的说明本人完全了解河北工业大学关于收集、保存、使用学位论文的以下规定:学校有权采用影印、缩印、扫描
3、、数字化或其它手段保存论文;学校有权提供本学位论文全文或者部分内容的阅览服务;学校有权将学位论文的全部或部分内容编入有关数据库进行检索、交流;学校有权向国家有关部门或者机构送交论文的复印件和电子版。(保密的学位论文在解密后适用本授权说明)学位论文作者签名:日期:导师签名:日期:河北工业大学硕士论文摘要近年来,随着各行业信息化的逐步推进,遥感技术作为传统摄影测量发展的重要方向也取得长足进展。区别于航天遥感和航空遥感的高成本、低时效性、重返周期长等特点,无人机遥感作为新兴低空遥感的主要方式之一,有效的规避了部分高空遥感的缺点,为新兴遥感应用
4、提供了高时效性、高分辨率、低费用、低风险的解决方案。本文首先详细介绍了无人机遥感系统应用于植被覆盖区域影像匹配方面所涉及到的遥感影像数据处理技术,主要包括应用于遥感影像特征点提取的尺度不变特征变化SIFT(ScaleInvarianceFeatureTransform)算法、基于GPU(GraphicsProcessingUnit)加速的SIFT特征点检测处理、增量式三维点云重建Bundler算法、CMVS/PMVS三维点云加密算法等。基于以上几种技术以及无人机遥感影像自身处理特点,本文给出针对不同类型的植被覆盖区域的无人机影像处理方法
5、,主要从以下三个方面入手。一、给出GPU-SIFT算法中尺度划分和高斯差分金字塔的参数设置,并提出针对植被覆盖区域高分辨率无人机遥感影像处理的最优参数设定。对采用GPU优化的SIFT算法各部分进行分析,并评价其性能改善情况。二、基于GPS信息生成像点的UTM坐标,并使用K-Dimension树的数据结构对其进行检索,生成基于最小欧氏距离的匹配像对来代替测区影像的两两完全匹配,并对此计算过程采用GPU并行运算优化。三、结合增量式三维重建算法与点云加密算法,利用多视图光束法平差法生成基于SIFT特征点辅助信息的三维立体重建模型。从运算性能、
6、处理速度、处理效率等方面评估本文给出的针对不同类型的植被区域无人机影像处理方法,均效果良好,为实现无人机遥感影像实时处理提供可靠途径。关键字:无人机遥感影像GPU-SIFTBundler三维点云重建I河北工业大学硕士论文ABSTRACTInrecentyears,withthegradualadvancementofinformationtechnology,remotesensingtechnologyasanimportantdirectionforthedevelopmentoftraditionalphotogrammetryh
7、asmadeconsiderableprogress.Differentfromthehighcost,lowefficiency,longreturnperiodofSpaceremotesensingandAerialremotesensing,theUAVremotesensingeffectivelyavoidssomeshortcomingsofhighaltituderemotesensing,providingahigh-efficiency,high-resolution,low-cost,low-riskresolut
8、ionasoneofthemajorwaysofnewlowaltituderemotesensing.Thispaperfirstlyintroducestheremotesensingimagedata
此文档下载收益归作者所有