lecun-20151022-baylearn.pdf

lecun-20151022-baylearn.pdf

ID:34145184

大小:5.92 MB

页数:84页

时间:2019-03-04

lecun-20151022-baylearn.pdf_第1页
lecun-20151022-baylearn.pdf_第2页
lecun-20151022-baylearn.pdf_第3页
lecun-20151022-baylearn.pdf_第4页
lecun-20151022-baylearn.pdf_第5页
资源描述:

《lecun-20151022-baylearn.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、YLeCunObstaclesOnthepathtoAI(or“howIlearnedtostopworryingandloveunsupervisedlearning”)YannLeCunFacebookAIResearch&CenterforDataScience,NYUyann@cs.nyu.eduhttp://yann.lecun.comOr:YLeCunHowdoweincorporateReasoning/PlanningwithRepresentationlearning?YannLeCunFacebookAIResearch&CenterforDa

2、taScience,NYUyann@cs.nyu.eduhttp://yann.lecun.comOr:YLeCunHowdoweincorporateEpisodicMemorywithRepresentationlearning?YannLeCunFacebookAIResearch&CenterforDataScience,NYUyann@cs.nyu.eduhttp://yann.lecun.comAndYLeCunHowtheHelldowedoUnsupervisedLearning?YannLeCunFacebookAIResearch&Center

3、forDataScience,NYUyann@cs.nyu.eduhttp://yann.lecun.comWait,whataboutreinforcementlearning?YLeCunMeh,it'sthecherryonthecake.Thissoundsliketrolling.Ok,justalittlebit.ButthereisnowayinhellthatyoucanlearnbillionsofparameterswithRL.–Atleastnotwithinareasonableamountoftime.–Onescalarrewardp

4、ertrialisn'tgoingtocutit.YLeCunGeometryoftheLossFunctionDeepNetswithReLUs:ObjectiveFunctionisPiecewisePolynomialYLeCunIfweuseahingeloss,deltanowdependsonlabelYk:L(W)=∑C(X,Y,W)(∏W)31pijP(ij)∈PPiecewisepolynomialinWwithrandomW31,22coefficientsAlotisknownaboutthedistributionofcritical22p

5、ointsofpolynomialsonthespherewithrandom(Gaussian)coefficients[BenArousetal.]W22,14High-ordersphericalspinglasses14RandommatrixtheoryW14,33Z3YLeCunReasoning&RepresentationLearningReasoningasEnergyMinimization(structuredprediction++)YLeCunDeepLearningsystemscanbeassembledintoF(X,Y)=Marg

6、_zE(X,Y,Z)energymodelsAKAfactorgraphsEnergyfunctionisasumoffactorsFactorscanembedwholedeeplearningE(X,Y,Z)systemsX:observedvariables(inputs)EnergyModelZ:neverobserved(latentvariables)EnergyModel(factorgraph)(factorgraph)Y:observedontrainingset(outputvariables)Inferenceisenergyminimiza

7、tion(MAP)orfreeZenergyminimization(marginalization)overZ(unobserved)andYgivenanXF(X,Y)=MIN_zE(X,Y,Z)XYF(X,Y)=-logSUM_zexp[-E(X,Y,Z)](observed)(observedontrainingset)Energy-BasedLearning[LeCunetal.2006]YLeCunPushdownontheenergyofdesiredoutputsPushuponeverythingelse[LeCunetal2006]“Atuto

8、rialo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签