欢迎来到天天文库
浏览记录
ID:34111097
大小:2.29 MB
页数:66页
时间:2019-03-03
《区域交通协同控制的混沌量子进化算法分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、ABSTRACTAserialofareatrafficcomposetheurbantraffic,urbantraffictakeshugerisksonbehalftrafficflow,itcanrelievetrafficjamandincreasetrafficoperatingefficiencybysolvingurbanareatrafficsignalcontrolproblem.Sothispaperdevotestoresearchchaosquantumevolutionaryalgorithm,whi
2、chisatypeofintelligentoptimizationalgorithms,andappliestotrafficsignalcontrolofarearoadnetworkinordertoincreasecontrolefficiency.Urbanareatrafficsignalcontrol,wasnamed“surfacecontrol”,basedontheideathatdotandlinecanconstitutesurface,themainworkinthispaperisasfollows:
3、1.Taketheleastdelaytimeasaparameter,buildingsinglecrossingssingleobjectoptimizationmodel;andproposingakindofchaosquantumevolutionaryalgorithmbasedonindividualfitness,thenappliedthisalgorithmtosolvethemodel.Thesimulationresultshowsthatthisalgorithmismuchmoreefficientt
4、hanotheralgorithmstoimprovetrafficcongestion.2.Underthesaturationconstraintcondition,tobuildthesinglecrossingsmulti-objectoptimizationsignalcontrolmodelinconsideringsmallestdelay,leastparktimeandbiggesttrafficcapacityasobject,andproposedakindofchaosquantumevolutionar
5、yalgorithmbasedonobjectfunctiongradientandappliedittosolvethemodel.Thesimulationresulthasprovedthatthealgorithmcanadaptsignaltimingoptimizationcontrolunderdifferenttrafficstatusandimprovethetrafficconditioneffectively,thus,thisalgorithmiseffective.3.Buildingarterycon
6、trolmodelbasedonleastdelay,andproposingchaosquantumevolutionaryalgorithmbasedonobjectivefunctiongradientandfitnessandappliedthisalgorithmtosolvethisproblem.Thesimulationresulthasprovedthatthealgorithmcansatisfythedynamicsandrealtime,optimizationresulthassomeeffecttoi
7、mprovearterysystemvehicles,thisalgorithmiseffective.4.Basedontheresearchofsinglecrossingsandarterycrossingssignalcontrol,wetakingtheminimumdelayasthemeritstandardandbuildingsurfaceareanABSTRACTcrossingssignalcoordinatedcontrolmodel,thenproposedchaosdoublechainquantum
8、evolutionaryalgorithmbasedonobjfectivefunctiongradientandfitnessandappliedthisalgorithmtosolvethisproblem.Theresultindicatesthatthi
此文档下载收益归作者所有