欢迎来到天天文库
浏览记录
ID:34078899
大小:9.86 MB
页数:12页
时间:2019-03-03
《2017-2018学年江苏省盐城市高二下学期期末考试 数学 word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2018学年江苏省盐城市高二下学期期末考试数学试题注意事项: 1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分. 3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知复数(为虚数单位),则▲.2.某学校高三年级700人,高二年级700人,高一年级800人,若采用分层抽样的办法,从高一年级抽取80人,则全校
2、总共抽取▲人.3.命题“使得”是▲命题.(选填“真”或“假”)4.从甲、乙、丙、丁四个人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为▲.5.设双曲线的左、右焦点分别为,,右顶点为,若为线段的一个三等分点,则该双曲线离心率的值为▲.6.执行如图所示的伪代码,最后输出的值为▲.(第6题图)7.若变量,满足约束条件则的最大值为▲.8.若函数为偶函数,则的值为▲.9.(理科学生做)若展开式中的常数项为,则实数的值为▲.(文科学生做)函数的值域为▲.10.(理科学生做)要排出某班一天中语文、数学、政治、英语、体育、艺术6
3、门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为▲种.(用数字作答)(文科学生做)若,,则▲.11.已知对任意正实数,,,都有,类比可得对任意正实数,,,,,都有▲.12.若函数在和时取极小值,则实数的取值范围是▲.13.若方程有实根,则实数的取值范围是▲.14.若,且,则的最大值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表
4、,数学期望.(1)求和的值;(2)某同学连续玩三次该智力游戏,记积分大于0的次数为,求的概率分布与数学期望.X036(文科学生做)已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数的取值范围.16.(本小题满分14分)(理科学生做)如图,在正四棱柱中,,,点是的中点.(1)求异面直线与所成角的余弦值;(2)求直线与平面所成角的正弦值.(第16题理科图)(第16题文科图)(文科学生做)已知函数的部分图象如图所示.(1)求的值;(2)设函数,求在上的单调递减区间.17.(本小题满分14分)(理科学生做)已知数列
5、满足,().(1)求,,并猜想的通项公式;(2)用数学归纳法证明(1)中所得的猜想.(文科学生做)已知数列满足.(1)求,,的值,猜想并证明的单调性;(2)请用反证法证明数列中任意三项都不能构成等差数列.18.(本小题满分16分)直角坐标系中,椭圆的离心率为,过点.(1)求椭圆的方程;(2)已知点,直线与椭圆相交于两点,且线段被直线平分.①求直线的斜率;②若,求直线的方程.19.(本小题满分16分)如图是一个路灯的平面设计示意图,其中曲线段可视为抛物线的一部分,坐标原点为抛物线的顶点,抛物线的对称轴为轴,灯杆可视为线段,其
6、所在直线与曲线所在的抛物线相切于点.已知分米,直线轴,点到直线的距离为8分米.灯杆部分的造价为10元/分米;若顶点到直线的距离为t分米,则曲线段部分的造价为元.设直线的倾斜角为q,以上两部分的总造价为S元.(1)①求t关于q的函数关系式;②求S关于q的函数关系式;(2)求总造价S的最小值.xOyABC20.(本小题满分16分)设函数的导函数为.若不等式对任意实数恒成立,则称函数是“超导函数”.(1)请举一个“超导函数”的例子,并加以证明;(2)若函数与都是“超导函数”,且其中一个在上单调递增,另一个在上单调递减,求证:函数
7、是“超导函数”;(3)若函数是“超导函数”且方程无实根,(为自然对数的底数),判断方程的实数根的个数并说明理由.2017-2018学年度第二学期高二年级期终考试数学试题数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.2.3.真4.5.6.7.8.9.(理)(文)10.(理)(文)11.12.13.14.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.(理科)解:(1)因为,所以,即.①……………………………………………………………
8、……2分又,得.②…………………………………………………………………4分联立①,②解得,.…………………………………………………………………6分(2),依题意知,故,,,.…………………………………………………………………10分故的概率分布为的数学期望为.……………………………………………………14分(
此文档下载收益归作者所有