欢迎来到天天文库
浏览记录
ID:34048160
大小:546.50 KB
页数:11页
时间:2019-03-03
《辐射固化组分应用于耐划伤性硬涂层》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、http:/www.sansenpaint.net辐射固化组分应用于耐划伤性硬涂层 硬的耐划伤性丙烯酸酯组份广泛应用于各种塑料涂料中,应用领域从电子、通讯、半导体和数据存储器再到光学、汽车、航空航天和医疗设备。因用途广泛且多样化,随着时间的流逝,各种塑料的消费量也在不断增加,现在包括的材料有:如聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(PMMA)和聚碳酸酯(PC)。 本文介绍了一系列高官能度的紫外光固化产品,包括100%固体份的低聚物和水性聚氨酯分散体,它们可以配制成具有极好的耐划伤性、耐磨
2、性和耐候性配方,以支持它们在户外涂料中的应用。 材料评估 高官能度聚氨酯 对具有聚酯主链结构的脂肪族聚氨酯丙烯酸酯(UA)进行了调查。长期以来我们都认为这类化学结构的低聚物暴露在恶劣环境时表现出优异的耐久性,无论是在天然存在的条件下或人工加速老化条件下。较高的交联密度通常会增加涂层的硬度和耐划伤性。因此,本研究所选取的低聚物中每个分子中有6至9个不等的丙烯酸酯官能团,对于本项研究,这些分散体被标识为CN9006,CN9026,CN9025和CN9013。 水性低聚物 对于系列紫外光固化聚氨酯分
3、散体给出了数据,比较了它们的物理性能,因为其物性与耐磨性有关。这些分散体被标识为PRO12874,CN9500和CN9501。 丙烯酸聚氨酯硬涂层 该研究的第一部分将重点放在一系列高官能度脂肪族聚氨酯上,对各种基材的防护涂层的性能进行了评估。表1对低聚物及其属性进行了简单描述。 http:/www.sansenpaint.net 最初,纯低聚物的性能通过tabered雾影测试进行量化,使用泰伯砂轮,它评估了表面耐磨性对透明涂层雾影变化的影响。图1提供了应用条件和性能结果的描述。 由于这些低
4、聚物在黏度方面有很大差异,将丙酮加至每种低聚物中以便很好地控制膜厚。加入光引发剂(PI)以允许进行紫外光固化。将每一种混合物涂覆到透明基材上,除去溶剂后进行紫外光固化,得到的干膜厚度为75微米。也对环氧丙烯酸酯(CN120)低聚物进行了测试,以便进行比较。 在泰伯尔试验前后测试透光性。光透射百分比的下降报告为雾影差值。结果证明,与丙烯酸聚氨酯(UA)系列的低聚物相比,环氧丙烯酸酯(CN120)的耐磨性大幅下降。这个结果部分是由于丙烯酸聚氨酯的较高官能度,这导致了表面固化的改善。然而,丙烯酸聚氨酯材料更
5、好的柔韧性也是一个促进因素。http:/www.sansenpaint.net 也进行了其它的试验来量化各种低聚物的硬度特性,结果见表2。固化膜的玻璃化转变温度(Tg)是硬度的一个相当好的指示。通常,玻璃化温度越高,得到漆膜的表面硬度更高。但是,高硬度并不总是意味着良好的耐磨性。耐钢丝棉的数据证明了这种效果。具有较低Tg值的低聚物通过了钢丝棉测试,而那些具有较高Tg值的低聚物没有通过该试验。 泰伯尔试验,用质量损失表示 鉴于Tabered雾影测试能对涂层或漆膜的表面耐划伤性和耐磨性进行量化,泰伯尔
6、磨耗试验测量的是整体性能。该测试通常在较厚的涂层上使用磨损性更强的Taber砂轮(用CS17代替CS10)进行。在配方中对低聚物进行测试,配方中含有低官能度的单体以更好地控制漆膜厚度和改善延展性能。图2概括了基本的配方,每种低聚物配方的泰伯试验条件和泰伯质量损失结果。这些测试是在施涂到铝板上的50微米厚的固化膜上进行。 再次发现了环氧丙烯酸酯低聚物较差耐磨性,500次泰伯尔循环后的质量损失为140毫克。与此相反,丙烯酸聚氨酯低聚物实际上显示出相当低的质量损失。还值得注意的是,最高官能度的低聚物(C
7、N9013)与那些官能度为6的低聚物相比,结果较差。这意味着高硬度和高交联密度并不总是具有好的耐磨性,因为固化膜的弹性和延展性能也会影响耐磨性能。换言之,耐磨损的能力是由硬度和不具有脆性两者控制。这个概念也得到了CN9026优异性能的支持,对CN9026进行了化学设计来增强柔韧性。http:/www.sansenpaint.net 耐候性测试 为了使涂层有效地发挥保护屏障的作用,涂层必须具有极好的耐划伤性和耐磨性,并且当暴露于恶劣的环境条件下时不能降解。当使用高官能度的低聚物来增强耐划伤性时,涂层可
8、能会出现开裂,尤其是在较厚的漆膜部分。分别将UA低聚物以5、10和15微米的膜厚施涂到基材上然后将固化的样板在QUV®试验箱内进行实验室加速老化试验。QUV试验条件是变化的,包括60℃紫外光照射8小时的周期,随后是40℃黑暗条件下冷凝4小时。试验箱内装有UVA340灯管。UVA340灯管的光谱输出范围在300~400纳米之间,中心在340纳米。这种灯能最接近地复制太阳光的发射光谱。测量漆膜的黄变程度和光泽保持率作为时间的函数,将结果记录下来
此文档下载收益归作者所有