Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf

Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf

ID:33939354

大小:1.20 MB

页数:28页

时间:2019-02-28

Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf_第1页
Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf_第2页
Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf_第3页
Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf_第4页
Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf_第5页
资源描述:

《Spectral Theory of Branching Processes I The Case of Discrete Spectrum (1).pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Z.W~hrscheinlichkeitstheorieverw.Geb.5,6--33(1966)SpectralTheoryofBranchingProcesses.I*TheCaseofDiscreteSpectrumSAMtT]~LKA~Lr~andJAMESMcGrEGORReceivedSeptember28,1965w1.IntroductionAone-dimensionalMarkerbranchingprocessmaybecharacterizedasfollows.Anorganism,attheendofitslifetime(offixedduration)

2、,producesarandomnumber~ofoffspringwithprobabilitydistribution(1)Pr{~=k}=a~~=O,1,2....whereasusualak~0~ak:1.k=0Alloffspringactindependentlywiththesamelifetimeanddistributionofprogeny.ThepopulationsizeX(n)atthenthgenerationisatemporallyhomo-geneousMarkovchainwhosetransitionprobabilitymatrixis(2)P~

3、i:Pr{X(n+1)=jIX(n):i}:Pr{$1q-~2+"'"+~=j}where~'sareindependentobservationsofarandomvariablewiththeprobabilitylaw(I).Anequivalentwaytoexpress(2)isthroughitsgeneratingfunctionwhichissimply(3)~Pi1sl=[/(s)]/i=0,1....j~0whereook=oItisafamiliarfactthatthen-steptransitionprobabilitymatrixP!?=pr{X(n)=i[

4、x(0)=i}possessesthegeneratingfunction(4)~p~;o#=[In(s)]r1=0where(5)/,~(~)=/n-~(/(~))isthenthfunctionaliterateof/(s).*ResearchsupportedinpartbyContractsONR225(28)andNIHUSFHS10452atStanfordUniversity.SpectralTheoryofBranchingProcesses.I7AfinitestateMarkovtransitionmatrixPijordinarilyadmitsaspectral

5、re-presentationoftheformp.n.__(6)v--~~rnYJt(r)0j(r)rwhere~r(r=1,2....)aretheeigenvaluesofthematrixPii,yJi(r)denotestheithcomponentoftherthrighteigenvectorand0j(r)denotesthejthcomponentoftherthlefteigenvector.Thesystem{~0~(r),0~(r)}~'__1ischosentobebiortho-normal.Therepresentation(6)iscertainlyva

6、lidwhenalleigenvaluesaresimple,i.e.,noelementarydivisorsarise.Forinfinitetransitionprobabilitymatricesthepos-sibilityofaspectraldecompositionlike(6)israre.Theexistenceofeigenvaluesisnotevenassuredandindeed,continuousspectrumisusuallypresent.InthecasewhereP~Sisthetransitionmatrixofaone-dimensiona

7、lrandomwalk(see[7])thenPisaJacobimatrixandageneralizedspectralrepresentationexists.InthiscaseametriccanbeintroducedsuchthatPbecomesself-adjointandtheclassicalspectralresolutionofHilbertspacetheoryisavailable.Thedeviceofsymme

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。