欢迎来到天天文库
浏览记录
ID:33911843
大小:4.11 MB
页数:50页
时间:2019-03-01
《基于.用户配置文件的个性化推荐方法的研究与实现》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、万方数据工程硕士学位论文method,thefusionprocessingisconductedwiththenumberoftagswhichtheuserhadusedandthetotalnumberofresourceswhichtheuserhadmarkedwhileconstructinguserprofile,thetagweightsofactiVeusershasrelativelyreduced,also,thefIusionprocessingisconductedwiththenumberoftagswhichhad1abeledtheresourceandt
2、henumberofuserswhohadannotatedtheresource,sothattheprofilecouldmoreaccuratelyrenectthecharacteristicsofusersandresources.Second,thispaperhadfurtherstudiedthetraditionalcosinesimilaritycalculationmethod,andhadputforwardimproVementstrategytoimprovetheaccuracyoftheretrieVedresultasawhole,thatiscombi
3、ningwiththenumberoftagswhichhasmatched.Then,onthebasisofthetraditionalrecommendationsystem,calculatedthecorrelationofthepreliminaryresultandtheconlputeduserpronle,hadappliedtheuserinterestmodelintosearcheffbctiVely.TheeffbctivenessoftheproposedmethodisVerifiedbysomerelatedexperiments.Finally,used
4、themethodproposedinthispapertoexperimentwithMovieLensdatasetrepeatedly,andhadc01lectedusersintogroupsusingclusteringtechn0109yaccordingtothesimilarityofuserprofiles,hadconlputedtheusergroupinteresttoupdatinguser’sinterestmodel,combinedpersonalizedrecommendationandgrouprecommendationperfectly,andm
5、aketherecommendationresultmoreconvincing.Keywords:Personalizedsearch;TF-IDF;Userprofile;Resourceprofile;CosinesimiIari坶IV万方数据目录学位论文原创性声明⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..I学位论文版权使用授权书⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..I摘要⋯⋯⋯⋯⋯⋯⋯....⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.IIAbstract⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.III插图索引⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
6、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.VII附表索引⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯VIII第1章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.1研究背景及意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.2相关技术研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.2.1搜索引擎国内外研究现状⋯...⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..21.2.2基于标签的推荐技术国内外研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯一31.3主要研究内容⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯41.4论文组织结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5第2章相关技术综述⋯⋯⋯⋯⋯⋯⋯⋯
7、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62.1个性化推荐系统概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯62.2用户兴趣模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一72.2.1用户建模的信息来源⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯72。2.2用户兴趣模型的表示⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯82.2.3用户兴趣模型的建立与更新⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102.3主要聚类技术⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..102.3.1K均值聚
此文档下载收益归作者所有