a (very brief) History of the Trace Formula-James Arthur.pdf

a (very brief) History of the Trace Formula-James Arthur.pdf

ID:33896189

大小:118.73 KB

页数:11页

时间:2019-03-01

a (very brief) History of the Trace Formula-James Arthur.pdf_第1页
a (very brief) History of the Trace Formula-James Arthur.pdf_第2页
a (very brief) History of the Trace Formula-James Arthur.pdf_第3页
a (very brief) History of the Trace Formula-James Arthur.pdf_第4页
a (very brief) History of the Trace Formula-James Arthur.pdf_第5页
资源描述:

《a (very brief) History of the Trace Formula-James Arthur.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、A(verybrief)HistoryoftheTraceFormulaJamesArthurThisnoteisashortsummaryofalectureintheseriescelebratingthetenthanniversaryofPIMS.Thelectureitselfwasanattempttointroducethetraceformulathroughitshistoricalorigins.IthankBillCasselmanforsuggestingthetopic.IwouldalsoliketothankPeterSarna

2、kforsharinghishistoricalinsightswithme.IhopeIhavenotdistortedthemtoogrievously.Asitispresentlyunderstood,thetraceformulaisageneralidentityXX(GTF)fgeometrictermsg=fspectraltermsg:Thespectraltermscontainarithmeticinformationofafundamentalnature.However,theyarehighlyinaccessible,spec

3、tral"actually,inthenonmathematicalmeaningoftheword.Thegeometrictermsarequiteexplicit,buttheyhavethedrawbackofbeingverycomplicated.Therearesimpleanaloguesofthetraceformula,toymodels"onecouldsay,whicharefamiliartoall.Forexample,supposethatA=(aij)isacomplex(nn)-matrix,withdiagonalen

4、triesfuig=faiigandeigenvaluesfjg.Byevaluatingitstraceintwodi erentways,weobtainanidentityXnXnui=j:i=1j=1ThediagonalcoecientsobviouslycarrygeometricinformationaboutAasatransformationofCn.Theeigenvaluesarespectral,intheprecisemathematicalsenseoftheword.Foranotherexample,supposetha

5、tg2C1(Rn).Thisfunctioncthensatis esthePoissonsummationformulaXXg(u)=g^();u2Zn22iZnwhereZg^()=g(x)exdx;2Cn;RnistheFouriertransformofg.Oneobtainsaninterestingapplicationbylettingg=gTapproximatethecharacteristicfunctionoftheclosedballBTofradiusTabouttheorigin.AsTbecomeslarge,th

6、elefthandsideapproximatesthenumberoflatticepointsu2ZninB.TThedominanttermontherighthandsideistheintegral12Zg^(0)=g(x)dx;Rnwhichinturnapproximatesvol(BT).Inthisway,thePoissonsumma-tionformulaleadstoasharpasymptoticformulaforthenumberoflatticepointsinBT.Ourrealstartingpointistheupper

7、halfplaneH=z2C:Im(z)>0:ThemultiplicativegroupSL(2;R)of(22)realmatricesofdetermi-nant1actstransitivelybylinearfractionaltransformationsonH.Thediscretesubgroup=SL(2;Z)actsdiscontinuously.ItsspaceoforbitsnHcanbeidenti edwithanoncompactRiemannsurface,whosefundamentaldomainisthefami

8、l-iarmodularregion.1-101Mo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。