欢迎来到天天文库
浏览记录
ID:33876752
大小:17.81 MB
页数:76页
时间:2019-03-01
《web服务社区构建方法的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、万方数据东北大学硕士学位论文AbstractCo。ctionMethodnstruU0CtlonAbstractInordertomanageWebserviceresourceseffectively,Webservicecommunitycomesup.WebservicecommunityisdefinedasthecollectionofWrebserviceswimthesamefunctionalpropertyanddifferentnon-functionalones.Withtheincreasingcomplexb
2、usinessprocessesandreusedcomponents,Webservicecommunityisappliedintherangeofbothatomicandlarge—granularityWebservices.ServicediscoveryandreplacementbasedonservicecommunityCanimprovetheefficiencyofservicecomposition.ThetraditionalWebservicecommunityconstructionmethodisim
3、plementedthroughusers’manualregistration,whichhasalowefficiencyandisdifficulttoorganizeandmanageserviceresourceseffectively.Therefore,howtoconstructW曲servicecommunityautomaticallyhasbecomeanimportantaspectintheresearchofservicediscovery.Fortheaboveissues,thisthesispropo
4、sesaWebservicecommunitymulti-layermodel.111emodelcontainstwolayersoftheatomicWebservicecommunityandlarge—granularityone.DuringtheprocessofWebservicecommunityconstruction,basedonsomemethodsrelatedtocomplexnetwork,thisthesisproposesanatomicWebservicecommunityconstructionm
5、ethodbasedonweightedGNalgorithmandalarge-granularityWebservicecommunityconstructionmethodbasedonDW-Newmanalgorithm.TheweightedGNalgorithmmakessimilaratomicWebservicesinthesamecommunitybyminingthecommuni够insimilarrelation-basedWebservicecomplexnetwork.AndtheDW-Newmanalgo
6、rithmminesthecommunityininvokablerelation-basedWebservicecomplexnetworkandextractsthepathsbetweencertaintwonodestodiscoverlarge—granularityWebservices.Themethodmakeslarge-granularityWebserviceswhichhavesimilarfunctionsorbelongtothesanlebusinessareainthesamecommunity.For
7、theproposedmethods,thisthesiscarriesoutthenumerouscorrelationexperimentsbasedonthedatasetofChinaWebServiceCup.BesidesconstrctingWebservicecommunities,thecommunityatomicservicesimilaritymodelandthecommunitylarge—granularityoneareproposedtoanalyzetherationalityofconstruct
8、ionresults.Theexperimentalresultsshowthatcomparedwimthetraditionalcommunitydetectionalgorithmsofcomplexnetwork
此文档下载收益归作者所有