导数高考题型全归类

导数高考题型全归类

ID:33826989

大小:1.83 MB

页数:23页

时间:2019-03-01

导数高考题型全归类_第1页
导数高考题型全归类_第2页
导数高考题型全归类_第3页
导数高考题型全归类_第4页
导数高考题型全归类_第5页
资源描述:

《导数高考题型全归类》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、导数高考题型全归纳(非常实用)一、导数的基本应用(一)研究含参数的函数的单调性、极值和最值基本思路:定义域→→疑似极值点→→单调区间→→极值→→最值基本方法:一般通法:利用导函数研究法特殊方法:(1)二次函数分析法;(2)单调性定义法第一组本组题旨在强化对函数定义域的关注,以及求导运算和分类讨论的能力与技巧【例题】(2009江西理17/22)设函数.求(1)函数的单调区间;(2)略.解:函数定义域为,,由,得.因为当时或时,;当时,;所以的单调增区间是:;单调减区间是:.【例题】(2008北京理18/22)已知函数,求导函数,并确定的单调区间.解:.令,得.

2、当,即时,,所以函数在和上单调递减.当,即时,的变化情况如下表:0当,即时,的变化情况如下表:0所以,时,函数在和上单调递减,在上单调递增,时,函数在和上单调递减.时,函数在和上单调递减,在上单调递增.23/23第二组本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧【例题】(2009北京文18/22)设函数.(Ⅱ)求函数的单调区间与极值点.解:∵,当时,,函数在上单调递增,此时函数没有极值点.当时,由,当时,,函数单调递增,当时,,函数单调递减,当时,,函数单调递增,∴此时是的极大值点,是的极小值点.点评:此题是2010届文科考试说明的样题,题目考查

3、了对导函数零点进行分类的能力,旨在帮助学生巩固研究函数单调性的基本方法.【例题】(2009天津理20/22)已知函数其中.(II)当时,求函数的单调区间与极值.以下分两种情况讨论.(1)>,则<.当变化时,的变化情况如下表:f'(x)+0—0+f(x)↗极大值↘极小值↗23/23(2)<,则>,当变化时,的变化情况如下表:f'(x)+0—0+f(x)↗极大值↘极小值↗点评:此题与上一题考点相同,计算量略增,旨在帮助学生进一步提升对此类问题的认识和处理能力.【例题】(2008福建文21/22)已知函数的图象过点,且函数的图象关于y轴对称.(Ⅰ)求的值及函数的单

4、调区间;(Ⅱ)若,求函数在区间内的极值.解:(Ⅰ)由函数图象过点,得,………①由,得,则;而图象关于轴对称,所以-,所以,代入①得.于是.由得或,故的单调递增区间是,;由得,故的单调递减区间是.(Ⅱ)由(Ⅰ)得,令得或.当变化时,、的变化情况如下表:23/23f'(x)+0-0+f(x)增极大值减极小值增由此可得:当时,在内有极大值,无极小值;当时,在内无极值;当时,在内有极小值,无极大值;当时,在内无极值.综上所述,当时,有极大值,无极小值;当时,有极小值,无极大值;当或时,无极值.点评:本题是前面两个例题的变式,同样考查了对导函数零点的分类讨论,但讨论的

5、直接对象变为了函数自变量的研究范围,故此题思路不难,旨在帮助学生加深对此类问题本质的认识,并提升其详尽分类,正确计算的水平.【例题】(2009安徽文21/21)已知函数,a>0,(I)讨论的单调性;(II)设a=3,求在区间[1,]上值域.其中e=2.71828…是自然对数的底数.解:(Ⅰ)由于,令得①当,即时,恒成立,∴在上都是增函数.②当,即时,由得或∴或或又由得,∴综上,当在上都是增函数;23/23当在及上都是增函数,在是减函数.(2)当时,由(1)知,在[1,2]上是减函数,在[上是增函数.又∴函数在区间[1,]上的值域为.点评:(1)第一问在前面例

6、题的理论基础上,进一步加大了运算的难度,涉及到了换元法,分母有理化等代数技巧;(2)第二问将问题延伸到了函数值域上,过程比较简单,是一个承上启下的过渡性问题.(二)利用函数的单调性、极值、最值,求参数取值范围基本思路:定义域→→单调区间、极值、最值→→不等关系式→→参数取值范围基本工具:导数、含参不等式解法、均值定理等【例题】(2008湖北文17/21)已知函数(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为的直线是曲线的切线,求此直线方程.解:(Ⅰ),则或,当x变化时,与的变化情况如下表:(,+∞)+0-0+增极大值减极小值增从而可知,当时

7、,函数取得极大值9,即,∴.23/23(Ⅱ)由(Ⅰ)知,,依题意知,∴或.又,所以切线方程为,或,即,或.点评:(1)本题第一问是函数求极值的逆向设问,解题方法本质仍然是求含参数的函数的极值,难度不大;(2)本题第二问是求曲线切线的逆向设问,解题过程进一步强化了对切点的需求.【例题】(2009四川文20/22)已知函数的图象在与轴交点处的切线方程是.(I)求函数的解析式;(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.解:(I)由已知,切点为(2,0),故有,即……①又,由已知得……②联立①②,解得.所以函数的解析式为(II

8、)因为令当函数有极值时,方程有实数解.则,得.①当时

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。