数学分析求极限的方法

数学分析求极限的方法

ID:33785941

大小:604.00 KB

页数:9页

时间:2019-03-01

数学分析求极限的方法_第1页
数学分析求极限的方法_第2页
数学分析求极限的方法_第3页
数学分析求极限的方法_第4页
数学分析求极限的方法_第5页
资源描述:

《数学分析求极限的方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、求极限的方法具体方法⒈利用函数极限的四则运算法则来求极限定理1①:若极限和都存在,则函数,当时也存在且①②又若,则在时也存在,且有利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如、等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。例1:求解:原式=⒉用两个重要的极限来求函数的极限①利用来求极限的扩展形为:令,当或时,则有或例2:解:令t=.则sinx=sin(t)=sint,且当时9故例

2、3:求解:原式=②利用来求极限的另一种形式为.事实上,令所以例4:求的极限解:原式=利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。⒊利用等价无穷小量代换来求极限所谓等价无穷小量即称与是时的等价无穷小量,记作定理2②:设函数在内有定义,且有①若则②若则证明:①②可类似证明,在此就不在详细证明了!由该定理就可利用等价无穷小量代换来求某些函数的极限9例5:求的极限解:由而;();()故有=注:由上例可以看出,

3、欲利用此方法求函数的极限必须熟练掌握一些常用的等价无穷小量,如:由于,故有又由于故有arctanx,(x).另注:在利用等价无穷小代换求极限时,应该注意:只有对所求极限中相乘或相除的因式才能用等价无穷小量来代换,而对极限式中的相加或相减的部分则不能随意代换。如上式中,若因有tanx,而推出=则得到的结果是错误的。⒋利迫敛性来求极限定理3③:设f(x)=g(x)=A,且在某内有f(x)h(x)g(x),则h(x)=A例6:求x的极限解:1x<1-x.且由迫敛性知x=1做此类型题目的关键在于找出大于已知函数的函数和小于已知函

4、数的函数,并且所找出的两个函数必须要收敛于同一个极限。⒌利用函数的连续性求极限利用函数的连续性求极限包括:如函数在点连续,则及若且f(u)在点a连续,则9例7:求的极限解:由于及函数在处连续,故==。⒍利用洛比达法则求函数的极限在前面的叙述中,我们已经提到了利用等价无穷小量来求函数的极限,在此笔者叙述一种牵涉到无穷小(大)量的比较的求极限的方法。我们把两个无穷小量或两个无穷大量的比的极限统称为不定式极限,分别记作型或型的不定式极限。现在我们将以导数为工具研究不定式极限,这个方法通常称为洛比达法则。下面就给出不定式极限的求

5、法。(1)对于型不定式极限,可根据以下定理来求出函数的极限定理4④:若函数f(x)和函数g(x)满足:①==0。②在点的某空心邻域内两者都可导,且③=A。(A可为实数,也可为或)则==A。注:此定理的证明可利用柯西中值定理,在此,笔者就不一一赘述了。例8:求解:容易检验f(x)=1+与g(x)=在的邻域里满足定理的条件①和②,又因==-故由洛比达法则求得,==9在此类题目中,如果仍是型的不定式极限,只要有可能,我们可再次利用洛比达法则,即考察极限是否存在。当然,这是和在的某邻域内必须满足上述定理的条件。例9:求解:利用(

6、),则得原式===在利用洛比达法则求极限时,为使计算更加快捷减少运算中的诸多不便,可用适当的代换,如下例,例10:求解:这是型不定式极限,可直接运用洛比达法则求解,但是比较麻烦。如作适当的变换,计算上就会更方便些,故令当时有,于是有=(2)型不定式极限若满足如下定理的条件,即可由如下定理计算出其极限。定理5⑤:若函数f(x)和函数g(x)满足:①==②在点的某空心邻域内两者都可导,且③=A,(A可为实数,也可为或)。则==A。此定理可用柯西中值定理来证明,在此,笔者就不一一赘述了。例11:求解:由定理4得,9注1:若不存

7、在,并不能说明不存在。注2:不能对任何比式极限都按洛比达法则来求解。首先必须注意它是不是不定式极限;其次是观察它是否满足洛比达法则的其它条件。下面这个简单的极限=1虽然是型的,但若不顾条件随便使用洛比达法则:=就会因右式的极限不存在而推出原式的极限不存在这个错误的结论。(3)其它类型不定式极限不定式极限还有,,,,等类型。这些类型经过简单的变换,都可以化为型和型的不定式极限。例12:求解:这是一个型的不定式极限,作恒等变形=,将它转化为型的不定式极限,并用洛比达法则得到===例13:求解:这是一个型的不定式极限,作恒等变

8、形=其指数部分的极限是型的不定式极限,可先求得==9从而得=例14:求(k为常数)解:这是一个型的不定式极限,按上例变形的方法,先求型的极限,==然后得到=()当=0时上面的结果仍成立。例15:求解:这是一个型的不定式极限,类似地,先求其对数的极限(型)==1于是有=⒎利用泰勒公式求极限由于泰勒公式的特殊形式,对于求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。